
Applying the Explicit Aggregation Algorithm to

Heterogeneous Agent Models in Continuous Time*

Masakazu Emoto� Takeki Sunakawa�

First draft: September 2020

This version: April 2021

Abstract

This paper applies the explicit aggregation (XPA) algorithm to the standard het-

erogeneous agent model with aggregate uncertainty in continuous time. We find that

the XPA algorithm is faster in solving the model than the Krusell–Smith algorithm,

because the XPA algorithm does not rely on simulations within the algorithm to solve

the model. The XPA algorithm is more accurate than the perturbation method when

aggregate uncertainty is large.

Keywords: Continuous Time, Heterogeneous Agent Models, Explicit Aggregation Algorithm.

JEL codes: C63; D52

*We thank Eric Young (the editor), anonymous associate editor and referee, Takashi Kamihigashi, Soyoung Lee,
Tamotsu Nakamura, Galo Nuño, and Haruki Shibuya for comments and suggestions. The programming code used in
the paper is available at https://github.com/Masakazu-Emoto/XPA-in-Continuous-Time.

�Graduate School of Economics, Kobe University, 2-1 Rokko-dai, Nada, Kobe, 657-8501; Email:
masakazu.emoto@gmail.com

�Graduate School of Economics, Hitotsubashi University; Email: takeki.sunakawa@gmail.com.

1

mailto:masakazu.emoto@gmail.com
mailto:takeki.sunakawa@gmail.com

1 Introduction

There is more interest in heterogeneous agent macro models than ever before. Recent studies

such as Achdou et al. (2017) and Ahn et al. (2018) apply newly developed numerical methods

to solve heterogeneous agent models in continuous time. In particular, Ahn et al. (2018) study

heterogeneous agent models with aggregate uncertainty in continuous time and are able to solve

the model quickly. However, there are some challenges to their approach. First, their method solves

the model using a linear approximation and thus does not capture nonlinear effects of aggregate

uncertainty. Second, because of the linearization, the accuracy of solving the model is significantly

compromised when aggregate uncertainty is large and/or the model itself is highly nonlinear.

We present an alternative numerical method to address the issues mentioned above. We intro-

duce the explicit aggregation (XPA) algorithm of den Haan and Rendahl (2010) into the standard

heterogeneous agent model with aggregate shocks of Krusell and Smith (1998) in continuous time.

The XPA algorithm obtains the forecasting rule for aggregate capital from the individual saving

function without relying on simulations within the algorithm.1 Then we compare the XPA algo-

rithm in terms of accuracy and efficiency with the Krusell–Smith (KS) algorithm using simulations

and the Reiter–Ahn (REITER) algorithm using perturbations around the stationary distribution

without aggregate shocks.2

We find that, compared with the KS algorithm, the XPA algorithm is faster than the KS algo-

rithm in solving the standard Krusell–Smith model (5.7 seconds vs. 93.0 seconds in our example)

at the same level of accuracy. Compared with the REITER algorithm, the XPA algorithm is more

accurate than the REITER algorithm. Although the REITER algorithm can solve the model in a

fraction of second, its accuracy is deteriorated especially when aggregate uncertainty is large.

Our study is closely related to at least two areas of research. One is the literature on the

XPA algorithm. den Haan and Rendahl (2010) is the first paper to apply this method to the

standard heterogeneous agent model in Krusell and Smith (1998). Sunakawa (2020) shows that it

is possible to apply their approach to some other heterogeneous agent models such as Khan and

1Simulations are a part of the KS algorithm, whereas they are not in the XPA algorithm. See also Section 3.4 for
a discussion.

2Although we focus on these algorithms, some other useful algorithms are also found in den Haan et al. (2010).

2

Thomas (2003, 2008) and Krueger et al. (2016) in discrete time. Therefore, it is straightforward

to apply the XPA algorithm to more empirically plausible models even in continuous time. To the

best of our knowledge, the present paper is the first to apply the XPA algorithm to the standard

heterogeneous agent model with aggregate uncertainty in continuous time. Specifically, we use a

forecasting rule of K̇t in continuous time, whereas den Haan and Rendahl (2010); Sunakawa (2020)

use that of Kt+1 in discrete time. One of our contributions is that this alternative forecasting rule

in continuous time also works with the XPA algorithm.

The other is the research on methods to solve heterogeneous agent models with aggregate shocks

in continuous time. The pioneering research in this area is Ahn et al. (2018), which is also the

first to solve the Krusell and Smith (1998) model in continuous time. They adapt the perturbation

method originally developed by Reiter (2009) to heterogeneous agent models with aggregate shocks

in continuous time.3 Fernández-Villaverde et al. (2019a) propose a neural-network algorithm to

solve heterogeneous agent models with aggregate shocks in continuous time. Our algorithm, unlike

Fernández-Villaverde et al. (2019a) and the standard KS algorithm, solves the model without

using simulations. Furthermore, whereas the REITER algorithm solves the model using a linear

approximation, our algorithm solves the model nonlinearly so as to capture nonlinear effects of

aggregate uncertainty.4 This is especially important when we look at, for example, the effect of

aggregate uncertainty on the stochastic steady state (Fernández-Villaverde et al., 2019a).5 As we

will discuss later, the accuracy of solving the model is much higher than what is reported in Ahn

et al. (2018). Our results also hold for different degrees of persistence of the aggregate shock.

The paper consists of the following sections. In Section 2, we apply the XPA algorithm, as well

as the KS and REITER algorithms, to the Krusell and Smith (1998) model in continuous time.

In Section 3, we compare the results of the three algorithms, XPA, KS, and REITER, in terms of

3Reiter (2010a); Winberry (2018) further develop a method to reduce the dimension of the state space by projecting
the distribution onto principal components. Bayer and Luetticke (2020) and Childers (2018) also suggest novel
approaches using linearization.

4Reiter’s (2010b) backward induction method can also be applied to solve heterogeneous agent models nonlinearly.
The method is applied to the stochastic overlapping generations model with aggregate uncertainty of Khan (2017);
Kim (2018). Okahata (2018) demonstrates that the method can also be merged with the continuous-time methods.

5Perfect foresight methods (used in e.g., McKay et al. (2016); Kaplan et al. (2018)) are also unable to capture this
effect. Recently, Schaab (2021) has done such an analysis of continuous time models with aggregate uncertainty by
using a sparse grid method developed by Schaab and Zhang (2021).

3

accuracy and efficiency. Finally, Section 4 concludes.

2 Algorithms

We apply the XPA algorithm first developed by den Haan and Rendahl (2010) to the Krusell and

Smith (1998) model in continuous time as studied by Ahn et al. (2018). We choose the Krusell–

Smith model as it is known as one of the most popular heterogeneous agent models with aggregate

uncertainty. As the model is well known, we defer the details of the model to Appendix A.

KS and XPA algorithms Both the XPA and KS algorithms require two types of calculations,

the inner loop and the outer loop. The inner loop calculation is common between the XPA and KS

algorithms. In continuous time models, a finite difference method is used to solve the Hamilton–

Jacobi–Bellman (HJB) equation as in Achdou et al. (2017) for the policy function of household

savings. See Appendix A for details.6

In the outer loop, the policy function s(a, z,Kt, Zt) obtained in the inner loop is used to obtain

the forecasting rule (perceived law of motion) for the next period’s aggregate capital

K̇t = Γ(Kt, Zt). (1)

The XPA and KS algorithms are different in how they represent Equation (1). Let gt(a, z) be the

joint distribution of wealth and productivity. In the XPA algorithm, the forecasting rule is obtained

by aggregating the policy function with the distribution explicitly :

ΓXPA(Kt, Zt) =
∑
z

∫
a
s(a, z;Kt, Zt)gt(a, z)da,

=
∑
z

{s(Kt(z), z,Kt, Zt) + ξ(z)}φ(z), (2)

where Kt(z) is capital conditioned on labor productivity, φ(z) =
∫
gt(a, z)da is the proportion of

6Fernández-Villaverde et al. (2019b) solve the standard Krusell–Smith model in continuous time using the KS
algorithm. We extend their original programming code especially for the XPA algorithm. See Appendix C and D for
the details of computation.

4

households with z, and ξ(z) is for correcting the biases due to Jensen’s inequality. These objects

can be calculated immediately when we compute the steady state. We just need to evaluate the

policy function at a = Kt(z). In Appendix B, we explain the details of the XPA algorithm following

den Haan and Rendahl (2010) and Sunakawa (2020).

In the KS algorithm, taking the policy function as given, we simulate the model to obtain

the total factor productivity (TFP) sequence Zt and the mean of the wealth distribution in the

next period K̇t =
∑

z

∫
a s(a, z;Kt, Zt)gt(a, z)da at each point in time. Then the forecasting rule is

obtained by estimating the following forecasting rule using the simulated sequence of {Kt, Zt}.

ΓKS(Kt, Zt) = β0 + β1 lnKt + β2Zt, (3)

where (β0, β1, β2) are coefficients estimated by ordinary least squares.

REITER algorithm The REITER algorithm linearizes the model around the stationary distri-

bution obtained from a model without aggregate shocks and uses the system of linearized equations

to solve for the dynamics of the economy in the event of aggregate shocks. As a result, the whole

distribution is used for the perceived law of motion (forecasting rule). See Ahn et al. (2018) for

more details.

The law of motion in the REITER algorithm is obtained as follows. Let gt be a vector of

the wealth–productivity density gt(a, z) discretized by grid points of (a, z) and ĝt = gt − g be its

deviation from the stationary distribution. Then we have

dĝt
dt

= B̃g ĝt + B̃ZZt (4)

where B̃g and B̃Z are the matrices obtained by solving the system of linearized equations.7 Given

the sequence of {gt}, the sequence of aggregate capital is obtained by Kt =
∫
agt(a, z)dadz.

7This equation corresponds to Equation (17) in Ahn et al. (2018).

5

3 Numerical results

We compare the numerical results from three algorithms; XPA algorithm, KS algorithm, and

REITER algorithm. The parameter values and detailed settings are found in Appendix F.8

3.1 Forecasting rules and simulation paths

In Figure 1, we show the forecasting rule K̇t(Kt, Zt) in KS and XPA.9 We consider two cases. One

is with the standard deviation of the disturbance to TFP being equal to σ = 0.007, which is the

standard value. The other is with σ = 0.05, which is very large compared to the benchmark case

and is intended to show how large differences can be in the extreme case. As is clear from the

figure, when σ = 0.007, there is no significant difference in the forecasting rules obtained by each

algorithm. Each forecasting rule is characterized by a decreasing function with respect to capital

Kt and an increasing function with respect to TFP Zt. Even when σ = 0.05, the forecasting rules

in XPA and KS are very similar to each other, although they are slightly different when the values

of (Kt, Zt) are far away from the ones in the stationary distribution.

8We use the code developed by Ahn et al. (2018) for REITER. All the codes are modified to use the same set of
parameters simply for the purpose of comparison.

9As in Fernández-Villaverde et al. (2019b), we use K̇(K,Z) = 0 for all the grid points of (K,Z) as an initial guess
for the forecasting rule in both KS and XPA.

6

Figure 1: Forecasting rules

a. σ = 0.007

30 35 40
-0.4

-0.2

0

0.2

30 35 40

-0.2

0

0.2

0.4

30 35 40
-0.2

0

0.2

0.4

b. σ = 0.05

30 35 40
-0.8

-0.6

-0.4

-0.2

30 35 40

-0.2

0

0.2

0.4

30 35 40
0.2

0.4

0.6

0.8

In Figure 2, we show the results of the simulation path derived from the nonlinear model for

10,000 periods in XPA (compared with that in KS), and the simulation path derived from the

linearized model (i.e., Equation (4)) in REITER (compared with that in KS).10 It is clear from the

left panel of Figure 2 that the capital path obtained by each algorithm is very similar to each other

when σ = 0.007. In contrast, in the right panel of Figure 2, the capital path obtained by REITER

is very different from those by other algorithms when σ = 0.05.

The capital path in XPA tend to have an upward bias compared with that in KS. The more σ

increases, the larger the bias is (about 1% when σ = 0.05). However, each algorithm is accurate in

terms of the Den Haan errors as shown later in Figure 3.

10In all the algorithms, the time interval dt = 0.25 used in the simulation is the same as the time interval of
Ahn et al. (2018). In KS and XPA, we use a bilinear interpolation for aggregate capital and TFP to calculate the
wealth–productivity density at each point of time. See Appendix D.

7

Figure 2: Simulation paths

a. σ = 0.007

0 2000 4000 6000 8000 10000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

XPA-KS (%)

REITER-KS (%)

b. σ = 0.05

0 2000 4000 6000 8000 10000
-1

0

1

2

3

4

5

6

7

8

9

XPA-KS (%)

REITER-KS (%)

8

3.2 Efficiency

Comparing the results of XPA and KS in Table 1, we can see that XPA solves the model much

faster than KS because it does not use simulations. Comparing the computation times of XPA and

REITER, we can see that REITER is also faster than XPA. However, the difference between the

two is not that large (XPA: 5.7 seconds vs. REITER: 0.3 seconds).11

Table 1: Computation time

Algorithm Computation time
XPA (Our method) 5.714 sec

Krusell-Smith 92.964 sec
REITER (Ahn et al., 2018) 0.296 sec

Notes: Computations are done on a workstation with Intel Xeon E5–2699 v4 (2.20Ghz) and 32GB
RAM using MATLAB R2020b. Computation time is the average of 10 runs and excludes the time
spent for simulations.

3.3 Accuracy

We check the accuracy of solving the model using the Den haan errors proposed by den Haan (2010).

In the present paper, we simulate two sequences of 10,000 time periods with each algorithm. One

is {K̃t}t∈[0,T] obtained only from the forecasting rule for each algorithm (Equations (2)–(4)), and

the other is {K∗t }t∈[0,T] obtained from the fully nonlinear model including the the household HJB

equation and the Kolmogorov Forward equation.12 Then we use the sequences of {K∗t }t∈[0,T] and

{K̃t}t∈[0,T] to measure the Den haan errors

εMAX
DH ≡ 100 · max

t∈[0,T]
| ln K̃t − lnK∗t |.

Figure 3 summarize the Den haan errors for each algorithm. It is clear that when σ is small,

there is not much difference in the Den haan errors. However, when σ is large, the Den haan errors

11Note that we use MATLAB and no parallelization, so the gap might be smaller when we use a faster language
and/or parallelization.

12As in Ahn et al. (2018); Bayer and Luetticke (2020), to obtain the sequence of {K∗t } in REITER, we solve for
the optimal savings plan s∗t (aj , zi) at every pair of the wealth and productivity values (aj , zi) in the histogram under
the equilibrium factor prices (wt, rt) in every period t. See Appendix E.

9

for REITER are considerably larger than those for XPA and KS. Furthermore, the Den Haan errors

of XPA are smaller than those of KS.1314

Figure 3: Comparison of maximum of Den Haan errors

1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5

6

7

8

9

10

3.4 Discussion

Time for simulation Simulations are a part of the KS algorithm, whereas they are not in the

XPA algorithm. Specifically, simulations are done in KS to update the forecasting rules in the outer

loop. The outer loop in XPA is much faster than in KS, as simulations are unnecessary in XPA.

The computation time in Table 1 is solely for solving the model and includes time for simulations

for the KS algorithm only. Having said that, to get the simulated paths in Figure 2, simulations

in XPA are as slow as in KS. Indeed, taking the converged forecasting rule by each algorithm as

given, simulation time in XPA is almost identical to that in KS (about 10 seconds to compute a

sequence of 10,000 time periods in Figure 2).

13However, there is a possibility of using non-parametric forecasting rules or forecasting rules with higher-order
terms for KS to achieve higher accuracy.

14We also confirm that our results hold when the persistence of TFP, 1 − µ, is lowered from µ = 0.25 to µ = 0.5
or µ = 0.75. See Appendix F.

10

Market clearing It is nontrivial to handle market clearing conditions in XPA or KS. Sunakawa

(2020) shows a detailed explanation how to apply XPA in discrete time with market clearing in

lumpy investment models developed in Khan and Thomas (2003, 2008).15 XPA can solve the model

faster with a similar degree of accuracy to KS. XPA (or KS) in continuous time should work in

a similar way, although it takes more time to solve the model than REITER does. In REITER,

however, market clearing conditions hold only at the stationary distribution.

4 Conclusion

In this paper, we apply the explicit aggregation (XPA) algorithm proposed by den Haan and

Rendahl (2010) to the standard heterogeneous agent model with aggregate uncertainty (Krusell

and Smith, 1998) in continuous time. Using XPA, we can get an accuracy close to that of KS with

a similar speed to that of REITER. Future research will show that XPA can also be useful in models

such as ones with uncertainty shocks (Bloom et al., 2018) where linearization-based methods fail.

References

Achdou, Y., J. Han, J.-M. L. Lasry, P.-L. L. Lions, and B. Moll (2017): “Income and

Wealth Distribution in Macroeconomics: A Continuous-Time Approach,” NBER Working Papers

23732, National Bureau of Economic Research, Inc.

Ahn, S., G. Kaplan, B. Moll, , T. Winberry, and C. Wolf (2018): “When Inequality

Matters for Macro and Macro Matters for Inequality,” NBER Macroeconomics Annual, 1–75.

Bayer, C. and R. Luetticke (2020): “Solving heterogeneous agent models in discrete time with

many idiosyncratic states by perturbation methods,” Quantitative Economics, 11, 1253–1288.

Bloom, N., M. Floetotto, N. Jaimovich, I. Saporta-Eksten, and S. J. Terry (2018):

“Really Uncertain Business Cycles,” Econometrica, 86, 1031–1065.

15In these models, taking the shadow price of consumption as given, we obtain the aggregate consumption and
implied new shadow price. We solve for the fixed point of the shadow price at each grid point in the outer loop in
XPA.

11

Childers, D. (2018): “Solution of Rational Expectations Models with Function Valued States,”

Working Paper.

den Haan, W. J. (2010): “Comparison of Solutions to the Incomplete Markets Model with

Aggregate Uncertainty,” Journal of Economic Dynamics and Control, 34, 4–27.

den Haan, W. J., K. L. Judd, and M. Juillard (2010): “Computational suite of models with

heterogeneous agents: Incomplete markets and aggregate uncertainty,” Journal of Economic

Dynamics and Control, 34, 1–3.

den Haan, W. J. and P. Rendahl (2010): “Solving the Incomplete Markets Model with Ag-

gregate Uncertainty Using Explicit Aggregation,” Journal of Economic Dynamics and Control,

34, 69–78.

Fernández-Villaverde, J., S. Hurtado, and G. Nuño (2019a): “Financial Frictions and the

Wealth Distribution,” NBER Working Papers 26302, National Bureau of Economic Research,

Inc.

——— (2019b): “Solving the Krusell-Smith (1998) model,” Manuscript.

Kaplan, G., B. Moll, and G. L. Violante (2018): “Monetary Policy According to HANK,”

American Economic Review, 108, 697–743.

Khan, A. (2017): “Large Recessions in an Overlapping Generations with Unemployment,” 2017

Meeting Papers 1559, Society for Economic Dynamics.

Khan, A. and J. K. Thomas (2003): “Nonconvex Factor Adjustments in Equilibrium Business

Cycle Models: Do Nonlinearities Matter?” Journal of Monetary Economics, 50, 331–360.

——— (2008): “Idiosyncratic Shocks and the Role of Nonconvexities in Plant and Aggregate

Investment Dynamics,” Econometrica, 76, 395–436.

Kim, H. (2018): “Inequality, Portfolio Choice, and the Business Cycle,” Working Paper.

12

Krueger, D., K. Mitman, and F. Perri (2016): “Macroeconomics and Household Hetero-

geneity,” in Handbook of Macroeconomics, ed. by J. B. Taylor and H. Uhlig, Elsevier, vol. 2,

843–921.

Krusell, P. and A. A. J. Smith (1998): “Income and Wealth Heterogeneity in the Macroecon-

omy,” Journal of Political Economy, 106, 867–896.

McKay, A., E. Nakamura, and J. Steinsson (2016): “The Power of Forward Guidance Re-

visited,” American Economic Review, 106, 3133–3158.

Okahata, N. (2018): “An Alternative Solution Method for Continuous-Time Heterogeneous Agent

Models with Aggregate Shocks,” Mimeo.

Reiter, M. (2009): “Solving heterogeneous-agent models by projection and perturbation,” Journal

of Economic Dynamics and Control, 33, 649–665.

——— (2010a): “Approximate and Almost-Exact Aggregation in Dynamic Stochastic

Heterogeneous-Agent Models,” Economics Series 258, Institute for Advanced Studies.

——— (2010b): “Solving the incomplete markets model with aggregate uncertainty by backward

induction,” Journal of Economic Dynamics and Control, 34, 28–35.

Schaab, A. (2021): “Micro and Macro Uncertainty,” Mimeo.

Schaab, A. and A. Zhang (2021): “Adaptive Sparse Grid Methods for Differential Equations in

Economics,” Mimeo.

Sunakawa, T. (2020): “Applying the Explicit Aggregation Algorithm to Heterogeneous Macro

Models,” Computational Economics, 55, 845–874.

Winberry, T. (2018): “A Method for Solving and Estimating Heterogeneous Agent Macro Mod-

els,” Quantitative Economics, 9, 1123–1151.

Young, E. R. (2005): “Approximate Aggregation,” Mimeo, University of Virginia.

13

Appendix (not for publication)

A The Krusell–Smith model in continuous time

A.1 Environments

Households

There is a continuum of households with a normalized fixed mass indexed by j ∈ [0, 1]. Households

face idiosyncratic uncertainty regarding labor productivity and the borrowing constraint ajt ≥ 0,

where ajt is the value of asset holdings for household j in period t. There are two states of

labor productivity zjt for each household, ze and zu, which follow the Poisson process with arrival

rates λe and λu. ze shows that the household is employed and zu indicates that the household is

unemployed. If the household is employed, she/he receives labor income after taxation (1 − τ)wt.

When the household is unemployed, she/he receives unemployment insurance bwt financed by the

labor income tax.

Each household j ∈ [0, 1] chooses their consumption and savings (cjt, ajt) in each period t ≥ 0

to maximize their expected life-time utility by taking the wage rate wt and the interest rate rt as

given.

vj0 = maxE0

[∫ ∞
0

e−ρt
c1−γ
jt

1− γ
dt

]
,

s.t. dajt = (rtajt + (1− τ)zjtwt + (1− zjt)bwt − cjt)dt, ajt ≥ 0,

zjt ∈ {ze, zu}, ze = 1, zu = 0.

The instantaneous utility function is of constant-relative-risk-aversion form, ρ is the rate of time

preference, and γ is the degree of relative risk aversion. The population of households with a pair

of wealth and productivity levels is time-variant and given by gt(a, z). For notational convenience,

we drop time subscripts t from variables at the individual level hereafter.

14

Firm

The representative firm produces the final good Yt using capital Kt and labor Lt. The production

function is Cobb–Douglas form

Yt = eZtKα
t L

1−α
t ,

where α is the capital share. Zt is the logarithm of total factor productivity (TFP) following the

Ornstein–Uhlenbeck process

dZt = µ(Z̄ − Zt)dt+ σdWt, Z̄ = 0,

where dWt follows a Wiener process. 1− µ is the persistence of TFP and σ is the volatility of the

TFP. This process is similar to an AR(1) process in discrete time.

The wage rate and the interest rate are obtained from the first-order conditions for the profit

maximization problem as follows:

wt = (1− α)eZtKα
t L
−α
t , rt = αeZtKα−1

t L1−α
t − δ,

where δ is the depreciated rate of capital.

Government

The government imposes a tax on labor income to finance unemployment compensation. The

government’s budget is balanced as below

τwtφ(ze) = bwtφ(zu).

That is, the government’s tax revenue from labor income is equal to the government’s expenditure

to finance unemployment insurance. φ(ze) =
∫
gt(a, ze)da is the share of employment and φ(zu) =

15

∫
gt(a, zu)da is the share of unemployment in the economy.

Equilibrium

An equilibrium in this economy is consist of a set of prices {wt, rt}, quantities {Kt, Lt} and a

density {gt(a, z)} such that

1. Given wt, rt, the policy functions for consumption and savings, c∗t (a, z) and s∗t (a, z), are the

solution of the the Hamilton–Jacobi–Bellman (HJB) equation

ρvt(a, z) = max
c
u(c) + ∂avt(a, z)(rta+ (1− τ)zwt + (1− z)bwt − c)

+ λz(vt(a, z
′)− vt(a, z)) +

1

dt
Et[dvt(a, z)], (5)

where u(·) is the utility function and vt(·) is the value function in period t, which depends on

a particular realization of the aggregate state (gt(a, z), Zt).

2. The sequence of {gt(a, z)} is the solution of the Kolmogorov Forward (KF) equation

dgt(a, z)

dt
=− ∂a [st(a, z)gt(a, z)]− λzgt(a, z) + λz′gt(a, z

′) (6)

where st(a, z) = s∗t (a, z) is the optimal saving policy function corresponding to the household

optimization problem.

3. The wage rate and the interest rate are given by

wt = (1− α)eZtKα
t L
−α
t , rt = αeZtKα−1

t L1−α
t − δ.

4. The government’s budget constraint is satisfied as

τwtφ(ze) = bwtφ(zu),

where φ(ze) =
∫
a gt(a, ze)da, φ(zu) =

∫
a gt(a, zu)da are time-invariant distributions of pro-

16

ductivity.

5. The capital and the labor markets clear

Kt =
∑
z

∫
a
agt(a, z)da, Lt =

∑
z

∫
a
zgt(a, z)da.

HJB equation in the XPA and KS algorithms

In the XPA and KS algorithms, we assume approximate aggregation (Young, 2005) so that the

wealth–productivity density {gt(a, z)} as a state variable is approximated by the mean Kt so that

the aggregate state is (Kt, Zt). In this case, the value function is denoted by v(a, z,Kt, Zt) and the

HJB equation can be written as

ρv(a, z,Kt, Zt) = max
c

c1−γ − 1

1− γ
+ va(a, z,Kt, Zt)ȧ+ λz(v(a, z′,Kt, Zt)− v(a, z,Kt, Zt))

+ vK(a, z,Kt, Zt)K̇t

+ vZ(a, z,Kt, Zt)(−µZt) +
σ2

2
vZZ(a, z,Kt, Zt) (7)

subject to the budget constraint ȧ = rta + (1 − τ)zwt + (1 − z)bwt − c and the forecasting rule

K̇t = Γ(Kt, Zt) for the policy function of household savings, s(a, z,Kt, Zt). va, vK , and vZ are the

first order derivatives of the value function in terms of a,K, and Z and vZZ is the second order

derivative of the value function in terms of Z.

B Details of the XPA algorithm

We provide details of the XPA algorithm following den Haan and Rendahl (2010) and Sunakawa

(2020). In contrast with the KS algorithm, the XPA algorithm calculates the forecasting rules

without simulations within the algorithm. First, we rewrite the wealth–productivity density gt(a, z)

17

using the conditional probability as

gt(a|z) =
gt(a, z)∫
gt(a, z)da

=
gt(a, z)

φ(z)

⇔ gt(a, z) = gt(a|z)φ(z)

where φ(z) =
∫
gt(a, z)da is equal to the proportion of households with labor productivity z in the

economy.16 Then we can rewrite the forecasting rule using the conditional distribution of wealth

as

K̇(Kt, Zt) =
∑∫

s(a, z;Kt, Zt)gt(a, z)da

≈
∑

s

(∫
agt(a|z)da, z;Kt, Zt

)
φ(z)

=
∑

s(Kt(z), z;Kt, Zt)φ(z)

where Kt(z) =
∫
agt(a|z)da is capital conditioned on labor productivity z. We assume that the

household’s policy function s(a, z;Kt, Zt) is linear at a = Kt(z) so that
∫
s(a, z;Kt, Zt)g(a|z)da ≈

s (Kt(z), z;Kt, Zt) holds. We compute Kt(z) by the following equations:

Kt(z) = ψ(z)Kss, ψ(z) ≡ Kss(z)

Kss
=

Kss(z)∑
z

∫
agss(a, z)da

,

Kss(z) =

∫
agss(a|z)da =

∫
agss(a, z)da

φ(z)
,

where Kss and gss are capital and wealth distribution at the steady state without aggregate un-

certainty. We assume that ψ(z) is constant over aggregate fluctuations. Note that the ratio of the

capital conditioned on z to aggregate capital, ψ(z) = Kss(z)/Kss, can be easily obtained in the

steady-state calculation.

Moreover, following den Haan and Rendahl (2010), we conduct bias correction. As we assume

that the policy function is linear at a = Kt(z), there may be bias in the forecasting rule from

16We assume the share of employment φ(ze) (= 1−φ(zu)) is time-invariant, although it is straightforward to make
the employment measure be time-variant and depend on aggregate uncertainty as in Krusell and Smith (1998). See
also Sunakawa (2020).

18

Jensen’s inequality. We compute the steady-state counterparts to correct the bias:

ξ(z) = K̇ss(z)− sss(Kss(z), z),

K̇ss(z) =

∫
sss(a, z)gss(a|z)da =

∫
sss(a, z)gss(a, z)da

φ(z)
.

Again, ξ(z) can be computed at negligible cost in the steady state. Finally, we can write the

forecasting rule as follows

K̇(Kt, Zt) =
∑
z

{s(Kt(z), z,Kt, Zt) + ξ(z)}φ(z). (8)

That is, to obtain the forecasting rule, we just need to evaluate the policy function at a = Kt(z).

The value of Kt(z) may not be on the grid of a, so we use linear interpolation.

We have two important assumptions to derive Equation (8). One is that the policy function is

linear at a = Kt(z). The other is that the ratio of capital conditioned on z to aggregate capital,

ψ(z) = Kt(z)/Kt, is constant over aggregate fluctuations. The first assumption is acceptable

especially in the household consumption-saving problem in Krusell and Smith (1998), in which the

saving function is almost linear except for near the origin where poor households face borrowing

constraints. Sunakawa (2020) shows that the algorithm also works with nonlinear (S, s)–type policy

functions such as in Khan and Thomas (2003, 2008).

Also, Sunakawa (2020) shows that we can incorporate more than two states for the idiosyncratic

shock by using the epsilon-indexed aggregation. Note that the original analysis by den Haan and

Rendahl (2010) has dealt with only two states for the idiosyncratic shock in the Krusell and Smith

(1998) model (i.e., employment and unemployment) and they do so by increasing the number

of aggregate states indexed by employment status, K(z) for z ∈ {e, u}.17 Instead, we do not

need to increase the number of aggregate states with the epsilon-indexed approach, as shown in

Equation (8). The present paper shows that we can also use the epsilon-indexed aggregation in the

continuous-time framework as in Sunakawa (2020).

17The policy function becomes the form of s(k, z,Kt(e),Kt(u), Zt).

19

Summary of XPA Algorithm

In summary, we perform computations to solve the Krusell–Smith model with the XPA algorithm

as follows. As mentioned above, the XPA algorithm is fast because it does not use any simulations.

1. Compute the stationary distribution without aggregate uncertainty to obtain the conditional

capital ratio ψ(z) and the bias correction term for correcting the forecasting rule ξ(z).

2. (Inner loop) Solve the HJB equation for the policy function taking the forecasting rule as

given. See Appendix C for details.

3. (Outer loop) Compute the forecasting rule without simulations taking the policy function as

given. The bias correction is also done.

4. Repeat steps 2–3 until the forecasting rule converges.

C Solving the HJB equation with the upwind scheme

Fernández-Villaverde et al. (2019b) solve the standard Krusell–Smith model in continuous time us-

ing the KS algorithm. We extend their original programming code in the following two dimensions:

(i) We use the upwind scheme not only individual wealth, a, but also K and Z, which is necessary

for the XPA algorithm.18 (ii) We exclude the direct effect of aggregate variables K and Z on the

transition matrix for simulation.19

We discretize the individual wealth and productivity by grid points (aj , zi) for i = 1, 2 and

j = 1, ..., J so that gt,i,j = gt(aj , zi) holds. We also discretize the aggregate capital and productivity

by grid points (Kl, Zm) for l = 1, ..., L and m = 1, ...,M so that vi,j,l,m = v(aj , zi,Kl, Zm) holds.

We are going to solve the HJB equation (7) with an iterative method. Let vni,j,l,m be the value

function at n–th iteration. Then we have (note that we use the implicit method so that t + 1

18As shown in Appendix D, the upwind scheme for K and Z also improves the accuracy of the KS algorithm.
19In the current and next sections, we acknowledge referring to Fernández-Villaverde et al. (2019b) (hereafter

FVHN) for some derivations and notations.

20

variables are in the right hand side)

vn+1
i,j,l,m − v

n
i,j,l,m

∆
+ ρvn+1

i,j,l,m =
(cni,j,l,m)1−γ − 1

1− γ
+ ∂(F)

a vn+1
i,j,l,ms

n
i,j,l,m,F1sni,j,l,m,F>0 + ∂(B)

a vn+1
i,j,l,ms

n
i,j,l,m,B1sni,j,l,m,B<0

+ λi(v
n+1
−i,j,l,m − v

n+1
i,j,l,m) + ∂

(F)
K vn+1

i,j,l,mhl,m1hl,m>0 + ∂
(B)
K vn+1

i,j,l,mhl,m1hl,m<0

+ ∂
(F)
Z vn+1

i,j,l,mθ(Z̄ − Zm)1Z̄−Zm>0 + ∂
(B)
Z vn+1

i,j,l,mθ(Z̄ − Zm)1Z̄−Zm<0 +
σ2

2
∂2
ZZv

n+1
i,j,l,m

(9)

where

∂(F)
a vn+1

i,j,l,m =
vn+1
i,j+1,l,m − v

n+1
i,j,l,m

∆a
, ∂(B)

a vn+1
i,j,l,m =

vn+1
i,j,l,m − v

n+1
i,j−1,l,m

∆a
,

∂
(F)
K vn+1

i,j,l,m =
vn+1
i,j,l+1,m − v

n+1
i,j,l,m

∆K
, ∂

(B)
K vn+1

i,j,l,m =
vn+1
i,j,l,m − v

n+1
i,j,l−1,m

∆K
,

∂
(F)
Z vn+1

i,j,l,m =
vn+1
i,j,l,m+1 − v

n+1
i,j,l,m

∆Z
, ∂

(B)
Z vn+1

i,j,l,m =
vn+1
i,j,l,m − v

n+1
i,j,l,m−1

∆Z
,

∂ZZv
n+1
i,j,l,m =

vn+1
i,j,l,m+1 + vn+1

i,j,l,m−1 − 2vn+1
i,j,l,m

(∆Z)2
,

and

sni,j,l,m,F = wl,mzi + rl,maj −

 1

∂
(F)
a vni,j,l,m

1/γ

, sni,j,l,m,B = wl,mzi + rl,maj −

 1

∂
(B)
a vni,j,l,m

1/γ

.

Also, the optimal consumption is set to

cni,j,l,m = (∂av
n
i,j,l,m)−γ

where

∂av
n
i,j,l,m = ∂(F)

a vni,j,l,m1sni,j,l,m,F>0 + ∂(B)
a vni,j,l,m1sni,j,l,m,B<0 + ∂av̄

n
i,j,l,m1sni,j,l,m,F≤01sni,j,l,m,B≥0.

In the above expression, ∂av̄
n
i,j,l,m = (c̄ni,j,l,m)−γ where c̄ni,j,l,m is the consumption level such that

21

sn(ai) = 0. Equation (9) can be rearranged as

vn+1
i,j,l,m − v

n
i,j,l,m

∆
+ ρvn+1

i,j,l,m =
(cni,j,l,m)1−γ − 1

1− γ

+ αni,j,l,mv
n+1
i,j−1,l,m + βni,j,l,mv

n+1
i,j,l,m + ξni,j,l,mv

n+1
i,j+1,l,m + λiv

n+1
−i,j,l,m

+ αnK,l,mv
n+1
i,j,l−1,m + ξnK,l,mv

n+1
i,j,l+1,m

+ αnZ,mv
n+1
i,j,l,m+1 + ξnZ,mv

n+1
i,j,l,m−1

where

αni,j,l,m =
−sni,j,l,m,B1sni,j,l,m,B<0

∆a
,

βni,j,l,m =
sni,j,l,m,B1sni,j,l,m,B<0 − sni,j,l,m,F1sni,j,l,m,F>0

∆a
− λi

−
hl,m(−1hl,m<0 + 1hl,m>0)

∆K
−
θ(Z̄ − Zm)(−1Z̄−Zm<0 + 1Z̄−Zm>0)

∆Z
− σ2

(∆Z)2
,

ξni,j,l,m =
sni,j,l,m,F1sni,j,l,m,F>0

∆a
,

αnK,l,m = −
hl,m1hl,m<0

∆K
,

ξnK,l,m =
hl,m1hl,m>0

∆K
,

αnZ,m = −
θ(Z̄ − Zm)1Z̄−Zm<0

∆Z
+

σ2

2(∆Z)2
,

ξnZ,m =
θ(Z̄ − Zm)1Z̄−Zm>0

∆Z
+

σ2

2(∆Z)2
.

This equation is a system of 2× J ×L×M linear equations and can be stacked into matrix forms

as

1

∆
(vn+1 − vn) + ρvn+1 = un + Anvn+1 (10)

22

where

An = −

An
1 αnZ,1I2J×L 02J×L · · · 02J×L 02J×L

ξnZ,2I2J×L An
2 αnZ,2I2J×L · · · 02J×L 02J×L

02J×L ξnZ,3I2J×L An
3 · · · 02J×L 02J×L

...
. . .

. . .
. . .

. . .
...

ξnZ,M−1I2J×L An
M−1 αnZ,M−1I2J×L

02J×L 02J×L · · · 02J×L ξnZ,MI2J×L An
M

,

An
m = −

An
1,m αnK,1,mI2J 02J · · · 02J 02J

ξnK,2,mI2J An
2,m αnK,2,mI2J · · · 02J 02J

02J ξnK,3,mI2J An
3,m · · · 02J 02J

...
. . .

. . .
. . .

. . .
...

ξnK,L−1,mI2J An
L−1 αnK,L−1,mI2J

02J 02J · · · 02J ξnK,L,mI2J An
L

,

An
l,m =−

βn1,1,l,m ξn1,1,l,m 0 λ1

αn1,2,l,m βn1,2,l,m ξn1,2,l,m 0 λ1

0 αn1,3,l,m βn1,3,l,m ξn1,3,l,m 0 λ1

. . .
. . .

. . .
. . .

0 0 αn1,J,l,m βn1,J,l,m 0 λ1

λ2 0 βn2,1,l,m ξn2,1,l,m 0

λ2 αn2,2,l,m βn2,2,l,m ξn2,2,l,m 0

λ2 0 αn2,3,l,m βn2,3,l,m ξn2,3,l,m 0

. . .
. . .

. . .
. . .

λ2 0 0 αn2,J,l,m βn2,J,l,m

,

and

23

un =

un1

un2
...

unM

,vn =

vn1

vn2
...

vnM

,unm =

un1,m

un2,m
...

unL,m

,vnm =

vn1,m

vn2,m
...

vnL,m

,

unl,m =

(cn1,1,l,m)1−γ

1−γ
(cn1,2,l,m)1−γ

1−γ
...

(cn1,J,l,m)1−γ

1−γ
(cn2,1,l,m)1−γ

1−γ
...

(cn2,J,l,m)1−γ

1−γ

,vnl,m =

vn1,1,l,m

vn1,2,l,m
...

vn1,J,l,m

vn2,1,l,m
...

vn2,J,l,m

.

Given vn, the system can be solved for vn+1. An iterative procedure can be applied to (10) to

obtain a converged v = vn
∗

where n∗ is such that
∥∥vn∗+1 − vn

∗∥∥ is below a very small number.

We also define the transition matrix without the derivatives with regard to K and Z

Ã
n
l,m = −

β̃n1,1,l,m ξn1,1,l,m 0 λ1

αn1,2,l,m β̃n1,2,l,m ξn1,2,l,m 0 λ1

0 αn1,3,l,m β̃n1,3,l,m ξn1,3,l,m 0 λ1

. . .
. . .

. . .
. . .

0 0 αn1,J,l,m β̃n1,J,l,m 0 λ1

λ2 0 β̃n2,1,l,m ξn2,1,l,m 0

λ2 αn2,2,l,m β̃n2,2,l,m ξn2,2,l,m 0

λ2 0 αn2,3,l,m β̃n2,3,l,m ξn2,3,l,m 0

. . .
. . .

. . .
. . .

λ2 0 0 αn2,J,l,m β̃n2,J,l,m

,

24

where

β̃ni,j,l,m =
sni,j,l,m,B1sni,j,l,m,B<0 − sni,j,l,m,F1sni,j,l,m,F>0

∆a
− λi,

which is used when solving the Kolmogorov Forward equation for simulation.

D Solving the Kolmogorov Forward equation for simulation

In the outer loop in the KS algorithm and nonlinear simulation in all the algorithms to obtain

the sequence of {K∗t }, we solve the Kolmogorov Forward (KF) equation with an infinite difference

scheme. In the XPA and KS algorithms, we use a converged Ãl,m = Ã
n∗

l,m at each grid point of

(Kl, Zm) in the inner loop above for the transition matrix of the wealth–productivity density. Note

that we exclude the direct effect of aggregate variables K and Z (i.e., the derivatives with regard

to K and Z) on the transition matrix for simulation.

The law of motion of the wealth–productivity density is expressed as a form of the KF equation

gt+1,i,j − gt,i,j
∆t

=− ∂ast(aj , zi)gt+1,i,j − λigt+1,i,j + λigt+1,−i,j (11)

This equation can be expressed as a matrix form

gt+1 − gt = ∆tΓtgt+1 (12)

where gt = [gt,1,1, gt,1,2, ..., gt,1,J , gt,2,1, ..., gt,2,J]T is a vector of the wealth–productivity density at

grid points of (aj , zi) and Γt is a transition matrix.

In the XPA and KS algorithms, we have already obtained a converged matrix in the inner loop

for Γt.
20 As (Kt, Zt) in simulation may not be on grid points of (Kl, Zm) used in the inner loop,

we use bilinear interpolation of matrices at the nearest four grid points. That is, Γt = Ã
T
t is the

20See FVHN for more details.

25

transpose of

Ãt =(1− ωZ,t)((1− wK,t)Ãl∗,m∗ + wK,tÃl∗+1,m∗)

+ wZ,t((1− wK,t)Ãl∗,m∗+1 + wK,tÃl∗+1,m∗+1)

where wK,t = (Kt −Kl∗)/(Kl∗+1 −Kl∗) and wZ,t = (Zt − Zm∗)/(Zm∗+1 − Zm∗) and each of l∗,m∗

satisfies Kt ∈ [Kl∗ ,Kl∗+1] or Zt ∈ [Zm∗ , Zm∗+1] at each period t.

Difference from FVHN FVHN solve the HJB equation with the upwind scheme only for a in

the KS algorithm. We find that using the upwind scheme not only for a but also for K and Z is

necessary for the XPA algorithm. We find that it is also important to improve the KS algorithm

in terms of the R–squared and the Den Haan errors as shown in Table 2.

When FVHN solve the KF equation in a form of (12) in the KS algorithm, they use a converged

Al,m = An∗
l,m (without tilde) including the terms of derivatives with K and Z as the transition

matrix of the wealth–productivity density. We exclude these terms as it is more consistent with the

nonlinear simulation for the REITER algorithm as explained in Appendix E. However, compared

with the upwind scheme mentioned above, we find that this has only a marginal effect.

Table 2: Den Haan errors: alternative methods for the KS algorithm

a. Our approach

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH KS (%) 0.002 0.015 0.097 0.134 0.493 0.885

εMEAN
DH KS (%) 0.001 0.011 0.075 0.104 0.286 0.438

R2 0.999 0.999 0.999 0.999 0.999 0.998

b. Alternative approach (as in FVHN)

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH KS (%) 0.005 0.047 0.322 0.456 1.349 2.463

εMEAN
DH KS (%) 0.001 0.012 0.084 0.120 0.364 0.627

R2 0.994 0.994 0.994 0.993 0.991 0.988

26

E Den Haan errors for the REITER algorithm

As in Ahn et al. (2018); Bayer and Luetticke (2020), to obtain the sequence of {K∗t } in the RE-

ITER algorithm, we solve for the optimal savings plan s∗t (aj , zi) at every pair of the wealth and

productivity values (aj , zi) in the histogram under the equilibrium factor prices (wt, rt) in every

period t.21 To solve for the policy function of savings, we utilize the value function obtained in the

solution with linearization.22 Then we calculate the transition matrix for the law of motion of the

wealth–productivity density (i.e., Γt in (12)) from the policy function.

First, we calculate the optimal savings plan s∗t,i,j = s∗t (aj , zi) at each grid point in period t for

the KF equation (11). Having the current aggregate state {gt,i,j} and Zt, we have

Kt =
∑
i

∑
j

ajgt,i,j ,

wt = (1− α)eZt(Kt/Lt)
α,

rt = αeZt(Kt/Lt)
α−1 − δ.

From the household’s budget constraint, we have savings as st,i,j = st(aj , zi) = wtzi + rtaj − ct,i,j .

Having the value function from the linearized solution at each grid point at date t, denoted by

{ṽt,i,j}, we also have the optimal value of consumption at each (aj , zi):

c∗t,i,j = c∗t (aj , zi) = (∂aṽt,i,j)
−γ . (13)

We use the upward scheme to approximate the derivative of the value function as well. Therefore,

s∗t,i,j,F =wtzi + rtaj −

[
1

∂
(F)
a ṽt,i,j

]1/γ

,

s∗t,i,j,B =wtzi + rtaj −

[
1

∂
(B)
a ṽt,i,j

]1/γ

,

21In general, we need to solve for the equilibrium prices that clear markets. The market clearing condition for
capital is met in the first place in our case with the standard Krusell-Smith model.

22Bayer and Luetticke (2020) solve the optimization problem by utilizing the expected value function that is
obtained in the solution with linearization.

27

where

∂(F)
a ṽt,i,j =

ṽt,i,j+1 − ṽt,i,j
∆a

,

∂(B)
a ṽt,i,j =

ṽt,i,j − ṽt,i,j−1

∆a
,

Then, Equation (11) can be rearranged as

gt+1,i,j − gt,i,j
∆t

=αt,i,jgt+1,i,j+1 + βt,i,jgt+1,i,j + ξt,i,jgt+1,i,j−1 + λ−igt+1,−i,j

where

αt,i,j =
−s∗t,i,j,B1s∗t,i,j,B<0

∆a
,

βt,i,j =
s∗t,i,j,B1s∗t,i,j,B<0 − s∗t,i,j,F1s∗t,i,j,F>0

∆a
− λi,

ξt,i,j =
s∗t,i,j,F1s∗t,i,j,F>0

∆a
.

This equation can be stacked into a matrix form as Equation (12) such that

Γt =

βt,1,1 ξt,1,1 0 λ1

αt,1,2 βt,1,2 ξt,1,2 0 λ1

0 αt,1,3 βt,1,3 ξt,1,3 0 λ1

. . .
. . .

. . .
. . .

0 0 αt,1,J βt,1,J 0 λ1

λ2 0 βt,2,1 ξt,2,1 0

λ2 αt,2,2 βt,2,2 ξt,2,2 0

λ2 0 αt,2,3 βt,2,3 ξt,2,3 0

. . .
. . .

. . .
. . .

λ2 0 0 αt,2,J βt,2,J

T

.

28

F Further numerical results

Benchmark parameters

We use the parameters in Table 3 in the benchmark case, following those used in Ahn et al. (2018).

Later, we change the volatility and persistence parameters of the TFP to examine its effect on the

accuracy of solving the model between different algorithms. We set the range of grid points for K

as [0.8K̄, 1.2K̄] where K̄ is the value of aggregate capital in the stationary distribution. The range

of grid points for Z is [−m̄σ, m̄σ] where m̄ is a real number. We set m̄ = 4. We divide the state

space of (Kl, Zm) by 3 grid points for each.

Table 3: Parameter values

Parameters Benchmark Value

γ : Relative Risk Aversion 1.0
ρ : Rate of Time Preference 0.01
α : Capital Share 0.36
δ : Rate of Capital Depreciation 0.025
τ : Tax Rate of Labor Income 0.011
b : Rate of Compensation 0.15
1− µ : Persistence of TFP 0.75
σ : Volatility of TFP 0.07
z : Idiosyncratic of Labor Productivity zu = 0, ze = 1
λ : Probability of Labor Productivity λe = 0.50, λu = 0.03

In Figure 4, we show the results of the simulation path in XPA. The red line {K̃t}t∈[0,T] in

the figure shows the simulation obtained only from the forecasting rule for 10,000 periods, while

the blue line {K∗t }t∈[0,T] shows the simulation obtained from the nonlinear model including the

household HJB equation (with the forecasting rule) and the Kolmogorov Forward equation for

10,000 periods. This is known as the Den haan’s (2010) fundamental plot showing the accuracy of

the solution. It is clear from the figure that the capital paths resulting from these simulations are

very close.23

23If the red and blue lines are close, households approximately act according to the correct forecasting rule. If not,
households are using the wrong forecasting rule. Therefore, the divergence between the two lines indicates that the
model is not solved correctly based on rational expectations.

29

Figure 4: Simulation path in XPA (Den haan’s fundamental plot)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

35

35.5

36

36.5

We also check the robustness of our results with respect to the persistence of TFP. That is,

the persistence of TFP, 1 − µ, is lowered from µ = 0.25 to µ = 0.5 or µ = 0.75. In Table 4, we

compare the mean of the simulation path derived from the nonlinear model for 10,000 periods in

XPA (compared with that in KS) and the mean of the simulation path derived from the linearized

model in REITER (compared with that in KS) for each µ. We see that the gap between XPA and

KS is much smaller than the gap between REITER and KS for alternative values of µ as well.

In Table 5, we show that the Den haan errors of KS, XPA, and REITER for each µ. We use

the sequences of {K∗t }t∈[0,T] and {K̃t}t∈[0,T] to measure the Den haan errors

εMAX
DH ≡ 100 · max

t∈[0,T]
| ln K̃t − lnK∗t |,

εMEAN
DH ≡ 100 ·

∑
t∈[0,T] | ln K̃t − lnK∗t |

T
.

It is clear that, regardless of the value of µ, the Den haan errors of XPA are smallest compared to

those of REITER and KS when σ is large.

30

Table 4: Simulation of capital paths

a. Case of µ = 0.25 (benchmark)

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

XPA–KS (%) 0.001 0.013 0.097 0.160 0.529 1.079

REITER–KS (%) 0.002 0.022 0.062 0.084 2.832 6.688

a. Case of µ = 0.50

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

XPA–KS (%) 0.001 0.007 0.055 0.098 0.341 0.711

REITER–KS (%) 0.002 0.015 0.056 0.051 1.524 4.127

b. Case of µ = 0.75

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

XPA–KS (%) 0.000 0.005 0.039 0.074 0.270 0.571

REITER–KS (%) 0.001 0.011 0.047 0.053 0.922 2.908

31

Table 5: Den Haan errors: robustness

a. Case of µ = 0.25 (benchmark)

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH XPA (%) 0.001 0.011 0.084 0.125 0.336 0.580

εMEAN
DH XPA (%) 0.000 0.004 0.028 0.038 0.091 0.140

εMAX
DH KS (%) 0.002 0.015 0.097 0.134 0.493 0.885

εMEAN
DH KS (%) 0.001 0.011 0.075 0.104 0.286 0.438

εMAX
DH REITER (%) 0.000 0.003 0.144 0.387 4.379 9.759

εMEAN
DH REITER (%) 0.000 0.002 0.106 0.273 3.381 7.546

a. Case of µ = 0.50

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH XPA (%) 0.001 0.008 0.048 0.062 0.157 0.308

εMEAN
DH XPA (%) 0.000 0.003 0.019 0.024 0.053 0.083

εMAX
DH KS (%) 0.001 0.009 0.059 0.083 0.278 0.483

εMEAN
DH KS (%) 0.001 0.007 0.044 0.060 0.155 0.235

εMAX
DH REITER (%) 0.000 0.001 0.069 0.155 2.431 5.961

εMEAN
DH REITER (%) 0.000 0.001 0.057 0.126 1.989 4.864

b. Case of µ = 0.75

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH XPA (%) 0.001 0.006 0.040 0.052 0.110 0.185

εMEAN
DH XPA (%) 0.000 0.003 0.017 0.022 0.041 0.055

εMAX
DH KS (%) 0.001 0.006 0.042 0.059 0.200 0.350

εMEAN
DH KS (%) 0.001 0.005 0.031 0.043 0.107 0.163

εMAX
DH REITER (%) 0.000 0.001 0.046 0.097 1.593 4.263

εMEAN
DH REITER (%) 0.000 0.001 0.039 0.081 1.312 3.537

32

	Introduction
	Algorithms
	Numerical results
	Forecasting rules and simulation paths
	Efficiency
	Accuracy
	Discussion

	Conclusion
	The Krusell–Smith model in continuous time
	Environments

	Details of the XPA algorithm
	Solving the HJB equation with the upwind scheme
	Solving the Kolmogorov Forward equation for simulation
	Den Haan errors for the REITER algorithm
	Further numerical results

