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1 Introduction

There is more interest in heterogeneous agent macro models than ever before. Recent studies such

as Achdou et al. (2017), Ahn et al. (2018), and Fernández-Villaverde et al. (2019a) apply newly

developed numerical methods to solve heterogeneous agent models in continuous time. In particular,

Ahn et al. (2018) study heterogeneous agent models with aggregate uncertainty in continuous time

and are able to solve the model quickly. However, there are some challenges to their approach. First,

their method solves the model using a linear approximation and thus does not capture nonlinear

effects of aggregate uncertainty. Second, because of the linearization, the accuracy of solving the

model is significantly compromised when aggregate uncertainty is large and/or the model itself is

highly nonlinear.

We present an alternative numerical method to address the issues mentioned above. We intro-

duce the explicit aggregation (XPA) algorithm of den Haan and Rendahl (2010) into the standard

heterogeneous agent model with aggregate shocks of Krusell and Smith (1998) in continuous time.

The XPA algorithm obtains the forecasting rule for aggregate capital from the individual saving

function without relying on simulations within the algorithm. Then we compare the XPA algorithm

in terms of accuracy and efficiency with the Krusell–Smith (KS) algorithm using simulations and

the Reiter–Ahn (REITER) algorithm using perturbations around the deterministic steady state.1

We find that, compared with the KS algorithm, the XPA algorithm is faster than and as accurate

as the KS algorithm in solving the standard Krusell–Smith model. Compared with the REITER

algorithm, the XPA algorithm can solve the model nearly as quickly as the REITER algorithm

does, and is more accurate than the REITER algorithm, especially when aggregate uncertainty is

large.

Our study is closely related to at least two areas of research. One is the literature on the

XPA algorithm. den Haan and Rendahl (2010) is the first paper to apply this method to the

standard heterogeneous agent model in Krusell and Smith (1998). Sunakawa (2020) shows that it

is possible to apply their approach to some other heterogeneous agent models such as Khan and

Thomas (2003, 2008) and Krueger et al. (2016) in discrete time. Therefore, it is straightforward

1Although we focus on these algorithms, some other useful algorithms are also found in den Haan et al. (2010).
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to apply the XPA algorithm to more empirically plausible models even in continuous time. To the

best of our knowledge, the present paper is the first to apply the XPA algorithm to the standard

heterogeneous agent model with aggregate uncertainty in continuous time.

The other is the research on methods to solve heterogeneous agent models with aggregate

shocks in continuous time. The pioneering research in this area is Ahn et al. (2018). They adapt

the perturbation method originally developed by Reiter (2009) to heterogeneous agent models with

aggregate shocks in continuous time.2 Fernández-Villaverde et al. (2019a) propose a neural-network

algorithm to solve heterogeneous agent models with aggregate shocks in continuous time. Our

algorithm, unlike Fernández-Villaverde et al. (2019a) and the standard KS algorithm, solves the

model without using simulations. Furthermore, whereas the REITER algorithm solves the model

using a linear approximation, our algorithm solves the model nonlinearly so as to capture nonlinear

effects of aggregate uncertainty.3 This is especially important when we look at, for example, the

effect of aggregate uncertainty on the stochastic steady state (Fernández-Villaverde et al., 2019a;

Nakata, 2017).4 As we will discuss later, the accuracy of solving the model is much higher than

what is reported in Ahn et al. (2018). Our results also hold for different degrees of persistence of

the aggregate shock.

The paper consists of the following sections. In Section 2, we apply the XPA algorithm, as well

as the KS and REITER algorithms, to the Krusell and Smith (1998) model in continuous time.

In Section 3, we compare the results of the three algorithms, XPA, KS, and REITER, in terms of

accuracy and efficiency. Finally, Section 4 concludes.

2 Algorithms

We apply the XPA algorithm first developed by den Haan and Rendahl (2010) to the Krusell and

Smith (1998) model in continuous time as studied by Ahn et al. (2018). We choose the Krusell–

2Reiter (2010a); Winberry (2018) further develop a method to reduce the dimension of the state space by projecting
the distribution onto principal components. Bayer and Luetticke (2020) and Childers (2018) also suggest novel
approaches using linearization.

3Reiter’s (2010b) backward induction method can also be applied to solve heterogeneous agent models nonlinearly.
The method is applied to the stochastic overlapping generations model with aggregate uncertainty of Khan (2017);
Kim (2018). Okahata (2018) demonstrates that the method can also be merged with the continuous-time methods.

4Perfect foresight methods (used in e.g., McKay et al. (2016)) are also unable to capture this effect.
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Smith model as it is known as one of the most popular heterogeneous agent models with aggregate

uncertainty. As the model is well known, we defer the details of the model to Appendix A.

KS and XPA algorithms Both the XPA and KS algorithms require two types of calculations,

the inner loop and the outer loop. The inner loop calculation is common between the XPA and KS

algorithms. In continuous time models, a finite difference method is used to solve the Hamilton–

Jacobi–Bellman (HJB) equation as in Achdou et al. (2017) for the policy function of household

savings. See Appendix A for details.5

In the outer loop, the policy function s(a, z,Kt, Zt) obtained in the inner loop is used to obtain

the forecasting rule (perceived law of motion) for the next period’s aggregate capital

K̇t = Γ(Kt, Zt). (1)

The XPA and KS algorithms are different in how they represent Equation (1). Let gt(a, z) be

the joint distribution of wealth and productivity. In the XPA algorithm, the forecasting rule is

obtained by aggregating the policy function with the distribution explicitly :

ΓXPA(Kt, Zt) =
∑
z

∫
a
s(a, z;Kt, Zt)gt(a, z)da,

=
∑
z

{s(Kt(z), z,Kt, Zt) + ξ(z)}φ(z), (2)

where Kt(z) is capital conditioned on labor productivity, φ(z) =
∫
gt(a, z)da is the proportion of

households with z, and ξ(z) is for correcting the biases due to Jensen’s inequality. These objects

can be calculated immediately when we compute the steady state. We just need to evaluate the

policy function at a = Kt(z). In Appendix B, we explain the details of the XPA algorithm following

den Haan and Rendahl (2010) and Sunakawa (2020).

In the KS algorithm, taking the policy function as given, we simulate the model to obtain

the total factor productivity (TFP) sequence Zt and the mean of the wealth distribution in the

5Fernández-Villaverde et al. (2019b) solve the standard Krusell–Smith model in continuous time using the KS
algorithm. We extend their original programming code especially for the XPA algorithm. See Appendix C and D.
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next period K̇t =
∑

z

∫
a s(a, z;Kt, Zt)gt(a, z)da at each point in time. Then the forecasting rule is

obtained by estimating the following forecasting rule using the simulated sequence of {Kt, Zt}.

ΓKS(Kt, Zt) = β0 + β1 lnKt + β2 lnZt, (3)

where (β0, β1, β2) are coefficients estimated by ordinary least squares.

REITER algorithm The REITER algorithm linearizes the model around the deterministic

steady state and uses the system of linearized equations to solve for the dynamics of the economy

in the event of aggregate shocks. As a result, the whole distribution is used for the perceived law

of motion (forecasting rule). See Ahn et al. (2018) for more details.

The law of motion in the REITER algorithm is obtained as follows. Let gt be a vector of

the wealth–productivity density gt(a, z) discretized by grid points of (a, z) and ĝt = gt − g be its

deviation from the deterministic steady state. Then we have

dĝt
dt

= B̃g ĝt + B̃ZZt (4)

where B̃g and B̃Z are the matrices obtained by solving the system of linearized equations.6 Given

the sequence of {gt}, the sequence of aggregate capital is obtained by Kt =
∫
agt(a, z)dadz.

3 Numerical results

We compare the numerical results from three algorithms; XPA algorithm, KS algorithm, and

REITER algorithm. The parameter values and detailed settings are found in Appendix F.7

6This equation corresponds to Equation (17) in Ahn et al. (2018).
7We use the code developed by Ahn et al. (2018) for REITER. All the codes are modified to use the same set of

parameters simply for the purpose of comparison.
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Figure 1: Forecasting rules
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3.1 Forecasting rules and simulation paths

In Figure 1, we show the forecasting rule K̇t(Kt, Zt) in KS and XPA. As is clear from the figure, there

is no significant difference in the forecasting rules obtained by each algorithm. Each forecasting

rule is characterized by a decreasing function with respect to capital Kt and an increasing function

with respect to TFP Zt.

In the left panel of Figure 2, we show the results of the simulation path derived from the

nonlinear model for 10000 periods in KS and XPA, and the simulation path derived from the

linearized model (i.e., Equation (4)) in REITER.8 It is clear from the figure that the capital paths

obtained from each algorithm are very similar.

3.2 Efficiency

Comparing the results of XPA and KS in Table 1, we can see that XPA solves the model much

faster than KS because it does not use simulations. Comparing the computation times of XPA and

REITER, we can see that REITER is also faster than XPA. However, the difference between the

two is not that large (XPA: 5.7 seconds vs. REITER: 0.3 seconds).9

8In all the algorithms, the time interval dt = 0.25 used in the simulation is the same as the time interval of
Ahn et al. (2018). In KS and XPA, we use a bilinear interpolation for aggregate capital and TFP to calculate the
wealth–productivity density at each point of time. See Appendix D.

9Note that we use MATLAB and no parallelization, so the gap might be smaller when we use a faster language
and/or parallelization.
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Figure 2: Simulation paths
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Table 1: Computation time

Algorithm Computation time
XPA (Our method) 5.714 sec

Krusell-Smith 92.964 sec
REITER (Ahn et al., 2018) 0.296 sec

Notes: Computations are done on a workstation with Intel Xeon E5–2699 v4 (2.20Ghz) and 32GB
RAM using MATLAB R2020b. Computation time is the average of 10 runs and excludes the time
spent for simulations.

3.3 Accuracy

We check the accuracy of solving the model using the Den haan errors proposed by den Haan (2010).

In the present paper, we simulate two sequences of 10000 time periods with each algorithm. One

is {K̃t}t∈[0,T ] obtained only from the forecasting rule for each algorithm (Equations (2)–(4)), and

the other is {K∗t }t∈[0,T ] obtained from the fully nonlinear model including the the household HJB

equation and the Kolmogorov Forward equation.10 Then we use the sequences of {K∗t }t∈[0,T ] and

10As in Ahn et al. (2018); Bayer and Luetticke (2020), to obtain the sequence of {K∗t } in REITER, we solve for
the optimal savings plan s∗t (aj , zi) at every pair of the wealth and productivity values (aj , zi) in the histogram under
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{K̃t}t∈[0,T ] to measure the Den haan errors

εMAX
DH ≡ 100 · max

t∈[0,T ]
| ln K̃t − lnK∗t |,

εMEAN
DH ≡ 100 ·

∑
t∈[0,T ] | ln K̃t − lnK∗t |

T
.

Figure 3 summarize the Den haan errors for each algorithm. It is clear that when σ is low, there

is not much difference in the Den haan errors. However, when σ is large, the Den haan errors for

REITER are considerably larger than those for XPA and KS. Furthermore, the Den Haan errors

of XPA are smaller than those of KS.11

Figure 3: Comparison of maximum of Den Haan errors
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the equilibrium factor prices (wt, rt) in every period t. See Appendix E.
11We also confirm that our results hold when the persistence of TFP, 1 − µ, is lowered from µ = 0.25 to µ = 0.5

or µ = 0.75. See Appendix F.
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4 Conclusion

In this paper, we apply the explicit aggregation (XPA) algorithm proposed by den Haan and

Rendahl (2010) to the standard heterogeneous agent model with aggregate uncertainty (Krusell

and Smith, 1998) in continuous time.

In our future research, we will apply our algorithm to the heterogeneous agent New Keynesian

model (e.g., Bayer et al., 2019; Gornemann et al., 2016; Kaplan et al., 2018) in continuous time

with a zero lower bound (ZLB) on nominal interest rates as the XPA algorithm can deal with

uncertainty stemming from future exogenous shocks and ZLB (Nakata, 2017). In these applications,

our algorithm will be even more interesting and useful than other algorithms.
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Appendix (not for publication)

A The Krusell–Smith model in continuous time

A.1 Environments

Households

There is a continuum of households with a normalized fixed mass indexed by j ∈ [0, 1]. Households

face idiosyncratic uncertainty regarding labor productivity and the borrowing constraint ajt ≥ 0,

where ajt is the value of asset holdings for household j in period t. There are two states of

labor productivity zjt for each household, ze and zu, which follow the Poisson process with arrival

rates λe and λu. ze shows that the household is employed and zu indicates that the household is

unemployed. If the household is employed, she/he receives labor income after taxation (1 − τ)wt.

When the household is unemployed, she/he receives unemployment insurance bwt financed by the

labor income tax.

Each household j ∈ [0, 1] chooses their consumption and savings (cjt, ajt) in each period t ≥ 0

to maximize their expected life-time utility by taking the wage rate wt and the interest rate rt as

given.

vj0 = maxE0

[∫ ∞
0

e−ρt
c1−γ
jt

1− γ
dt

]
,

s.t. dajt = (rtajt + (1− τ)zjtwt + (1− zjt)bwt − cjt)dt, ajt ≥ 0,

zjt ∈ {ze, zu}, ze = 1, zu = 0.

The instantaneous utility function is of constant-relative-risk-aversion form, ρ is the rate of time

preference, and γ is the degree of relative risk aversion. The population of households with a pair

of wealth and productivity levels is time-variant and given by gt(a, z). For notational convenience,

we drop time subscripts t from variables at the individual level hereafter.
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Firm

The representative firm produces the final good Yt using capital Kt and labor Lt. The production

function is Cobb–Douglas form

Yt = eZtKα
t L

1−α
t ,

where α is the capital share. Zt is the logarithm of total factor productivity (TFP) following the

Ornstein–Uhlenbeck process

dZt = µ(Z̄ − Zt)dt+ σdWt, Z̄ = 0,

where dWt follows a Wiener process. 1− µ is the persistence of TFP and σ is the volatility of the

TFP. This process is similar to an AR(1) process in discrete time.

The wage rate and the interest rate are obtained from the first-order conditions for the profit

maximization problem as follows:

wt = (1− α)eZtKα
t L
−α
t , rt = αeZtKα−1

t L1−α
t − δ,

where δ is the depreciated rate of capital.

Government

The government imposes a tax on labor income to finance unemployment compensation. The

government’s budget is balanced as below

τwtφ(ze) = bwtφ(zu).

That is, the government’s tax revenue from labor income is equal to the government’s expenditure

to finance unemployment insurance. φ(ze) =
∫
gt(a, ze)da is the share of employment and φ(zu) =

13



∫
gt(a, zu)da is the share of unemployment in the economy.

Equilibrium

An equilibrium in this economy is consist of a set of prices {wt, rt}, quantities {Kt, Lt} and a

density {gt(a, z)} such that

1. Given wt, rt, the policy functions for consumption and savings, c∗t (a, z) and s∗t (a, z), are the

solution of the the Hamilton–Jacobi–Bellman (HJB) equation

ρvt(a, z) = max
c
u(c) + ∂avt(a, z)(rta+ (1− τ)zwt + (1− z)bwt − c)

+ λz(vt(a, z
′)− vt(a, z)) +

1

dt
Et[dvt(a, z)], (5)

where u(·) is the utility function and vt(·) is the value function in period t, which depends on

a particular realization of the aggregate state (gt(a, z), Zt).

2. The sequence of {gt(a, z)} is the solution of the Kolmogorov Forward (KF) equation

dgt(a, z)

dt
=− ∂a [st(a, z)gt(a, z)]− λzgt(a, z) + λz′gt(a, z

′) (6)

where st(a, z) = s∗t (a, z) is the optimal saving policy function corresponding to the household

optimization problem.

3. The wage rate and the interest rate are given by

wt = (1− α)eZtKα
t L
−α
t , rt = αeZtKα−1

t L1−α
t − δ.

4. The government’s budget constraint is satisfied as

τwtφ(ze) = bwtφ(zu),

where φ(ze) =
∫
a gt(a, ze)da, φ(zu) =

∫
a gt(a, zu)da are time-invariant distributions of pro-
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ductivity.

5. The capital and the labor markets clear

Kt =
∑
z

∫
a
agt(a, z)da, Lt =

∑
z

∫
a
zgt(a, z)da.

HJB equation in the XPA and KS algorithms

In the XPA and KS algorithms, we assume approximate aggregation (Young, 2005) so that the

wealth–productivity density {gt(a, z)} as a state variable is approximated by the mean Kt so that

the aggregate state is (Kt, Zt). In this case, the value function is denoted by v(a, z,Kt, Zt) and the

HJB equation can be written as

ρv(a, z,Kt, Zt) = max
c

c1−γ − 1

1− γ
+ va(a, z,Kt, Zt)ȧ+ λz(v(a, z′,Kt, Zt)− v(a, z,Kt, Zt))

+ vK(a, z,Kt, Zt)K̇t

+ vZ(a, z,Kt, Zt)(−µZt) +
σ2

2
vZZ(a, z,Kt, Zt) (7)

subject to the budget constraint ȧ = rta + (1 − τ)zwt + (1 − z)bwt − c and the forecasting rule

K̇t = Γ(Kt, Zt) for the policy function of household savings, s(a, z,Kt, Zt). va, vK , and vZ are the

first order derivatives of the value function in terms of a,K, and Z and vZZ is the second order

derivative of the value function in terms of Z.

B Details of the XPA algorithm

We provide details of the XPA algorithm following den Haan and Rendahl (2010) and Sunakawa

(2020). In contrast with the KS algorithm, the XPA algorithm calculates the forecasting rules

without simulations within the algorithm. First, we rewrite the wealth–productivity density gt(a, z)

15



using the conditional probability as

gt(a|z) =
gt(a, z)∫
gt(a, z)da

=
gt(a, z)

φ(z)

⇔ gt(a, z) = gt(a|z)φ(z)

where φ(z) =
∫
gt(a, z)da is equal to the proportion of households with labor productivity z in the

economy.12 Then we can rewrite the forecasting rule using the conditional distribution of wealth

as

K̇(Kt, Zt) =
∑∫

s(a, z;Kt, Zt)gt(a, z)da

≈
∑

s

(∫
agt(a|z)da, z;Kt, Zt

)
φ(z)

=
∑

s(Kt(z), z;Kt, Zt)φ(z)

where Kt(z) =
∫
agt(a|z)da is capital conditioned on labor productivity z. We assume that the

household’s policy function s(a, z;Kt, Zt) is linear at a = Kt(z) so that
∫
s(a, z;Kt, Zt)g(a|z)da ≈

s (Kt(z), z;Kt, Zt) holds. We compute Kt(z) by the following equations:

Kt(z) = ψ(z)Kss, ψ(z) ≡ Kss(z)

Kss
=

Kss(z)∑
z

∫
agss(a, z)da

,

Kss(z) =

∫
agss(a|z)da =

∫
agss(a, z)da

φ(z)
,

where Kss and gss are capital and wealth distribution at the steady state without aggregate un-

certainty. We assume that ψ(z) is constant over aggregate fluctuations. Note that the ratio of the

capital conditioned on z to aggregate capital, ψ(z) = Kss(z)/Kss, can be easily obtained in the

steady-state calculation.

Moreover, following den Haan and Rendahl (2010), we conduct bias correction. As we assume

that the policy function is linear at a = Kt(z), there may be bias in the forecasting rule from

12We assume the share of employment φ(ze) (= 1−φ(zu)) is time-invariant, although it is straightforward to make
the employment measure be time-variant and depend on aggregate uncertainty as in Krusell and Smith (1998). See
also Sunakawa (2020).
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Jensen’s inequality. We compute the steady-state counterparts to correct the bias:

ξ(z) = K̇ss(z)− sss(Kss(z), z),

K̇ss(z) =

∫
sss(a, z)gss(a|z)da =

∫
sss(a, z)gss(a, z)da

φ(z)
.

Again, ξ(z) can be computed at negligible cost in the steady state. Finally, we can write the

forecasting rule as follows

K̇(Kt, Zt) =
∑
z

{s(Kt(z), z,Kt, Zt) + ξ(z)}φ(z). (8)

That is, to obtain the forecasting rule, we just need to evaluate the policy function at a = Kt(z).

The value of Kt(z) may not be on the grid of a, so we use linear interpolation.

We have two important assumptions to derive Equation (8). One is that the policy function is

linear at a = Kt(z). The other is that the ratio of capital conditioned on z to aggregate capital,

ψ(z) = Kt(z)/Kt, is constant over aggregate fluctuations. The first assumption is acceptable

especially in the household consumption-saving problem in Krusell and Smith (1998), in which the

saving function is almost linear except for near the origin where poor households face borrowing

constraints. Sunakawa (2020) shows that the algorithm also works with nonlinear (S, s)–type policy

functions such as in Khan and Thomas (2003, 2008).

Summary of XPA Algorithm

In summary, we perform computations to solve the Krusell–Smith model with the XPA algorithm

as follows. As mentioned above, the XPA algorithm is fast because it does not use any simulations.

1. Compute the deterministic steady state without aggregate uncertainty to obtain the con-

ditional capital ratio ψ(z) and the bias correction term for correcting the forecasting rule

ξ(z).

2. (Inner loop) Solve the HJB equation for the policy function taking the forecasting rule as

given. See Appendix C for details.

17



3. (Outer loop) Compute the forecasting rule without simulations taking the policy function as

given. The bias correction is also done.

4. Repeat steps 2–3 until the forecasting rule converges.

C Solving the HJB equation with the upwind scheme

Fernández-Villaverde et al. (2019b) solve the standard Krusell–Smith model in continuous time us-

ing the KS algorithm. We extend their original programming code in the following two dimensions:

(i) We use the upwind scheme not only individual wealth, a, but also K and Z, which is necessary

for the XPA algorithm.13 (ii) We exclude the direct effect of aggregate variables K and Z on the

transition matrix for simulation.14

We discretize the individual wealth and productivity by grid points (aj , zi) for i = 1, 2 and

j = 1, ..., J so that gt,i,j = gt(aj , zi) holds. We also discretize the aggregate capital and productivity

by grid points (Kl, Zm) for l = 1, ..., L and m = 1, ...,M so that vi,j,l,m = v(aj , zi,Kl, Zm) holds.

We are going to solve the HJB equation (7) with an iterative method. Let vni,j,l,m be the value

function at n–th iteration. Then we have (note that we use the implicit method so that t + 1

variables are in the right hand side)

vn+1
i,j,l,m − v

n
i,j,l,m

∆
+ ρvn+1

i,j,l,m =
(cni,j,l,m)1−γ − 1

1− γ
+ ∂(F )

a vn+1
i,j,l,ms

n
i,j,l,m,F1sni,j,l,m,F>0 + ∂(B)

a vn+1
i,j,l,ms

n
i,j,l,m,B1sni,j,l,m,B<0

+ λi(v
n+1
−i,j,l,m − v

n+1
i,j,l,m) + ∂

(F )
K vn+1

i,j,l,mhl,m1hl,m>0 + ∂
(B)
K vn+1

i,j,l,mhl,m1hl,m<0

+ ∂
(F )
Z vn+1

i,j,l,mθ(Z̄ − Zm)1Z̄−Zm>0 + ∂
(B)
Z vn+1

i,j,l,mθ(Z̄ − Zm)1Z̄−Zm<0 +
σ2

2
∂2
ZZv

n+1
i,j,l,m

(9)

13As shown in Appendix D, the upwind scheme for K and Z also improves the accuracy of the KS algorithm.
14In the current and next sections, we acknowledge referring to Fernández-Villaverde et al. (2019b) (hereafter

FVHN) for some derivations and notations.
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where

∂(F )
a vn+1

i,j,l,m =
vn+1
i,j+1,l,m − v

n+1
i,j,l,m

∆a
, ∂(B)

a vn+1
i,j,l,m =

vn+1
i,j,l,m − v

n+1
i,j−1,l,m

∆a
,

∂
(F )
K vn+1

i,j,l,m =
vn+1
i,j,l+1,m − v

n+1
i,j,l,m

∆K
, ∂

(B)
K vn+1

i,j,l,m =
vn+1
i,j,l,m − v

n+1
i,j,l−1,m

∆K
,

∂
(F )
Z vn+1

i,j,l,m =
vn+1
i,j,l,m+1 − v

n+1
i,j,l,m

∆Z
, ∂

(B)
Z vn+1

i,j,l,m =
vn+1
i,j,l,m − v

n+1
i,j,l,m−1

∆Z
,

∂ZZv
n+1
i,j,l,m =

vn+1
i,j,l,m+1 + vn+1

i,j,l,m−1 − 2vn+1
i,j,l,m

(∆Z)2
,

and

sni,j,l,m,F = wl,mzi + rl,maj −

 1

∂
(F )
a vni,j,l,m

1/γ

, sni,j,l,m,B = wl,mzi + rl,maj −

 1

∂
(B)
a vni,j,l,m

1/γ

.

Also, the optimal consumption is set to

cni,j,l,m = (∂av
n
i,j,l,m)−γ

where

∂av
n
i,j,l,m = ∂(F )

a vni,j,l,m1sni,j,l,m,F>0 + ∂(B)
a vni,j,l,m1sni,j,l,m,B<0 + ∂av̄

n
i,j,l,m1sni,j,l,m,F≤01sni,j,l,m,B≥0.

In the above expression, ∂av̄
n
i,j,l,m = (c̄ni,j,l,m)−γ where c̄ni,j,l,m is the consumption level such that

sn(ai) = 0. Equation (9) can be rearranged as

vn+1
i,j,l,m − v

n
i,j,l,m

∆
+ ρvn+1

i,j,l,m =
(cni,j,l,m)1−γ − 1

1− γ

+ αni,j,l,mv
n+1
i,j−1,l,m + βni,j,l,mv

n+1
i,j,l,m + ξni,j,l,mv

n+1
i,j+1,l,m + λiv

n+1
−i,j,l,m

+ αnK,l,mv
n+1
i,j,l−1,m + ξnK,l,mv

n+1
i,j,l+1,m

+ αnZ,mv
n+1
i,j,l,m+1 + ξnZ,mv

n+1
i,j,l,m−1
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where

αni,j,l,m =
−sni,j,l,m,B1sni,j,l,m,B<0

∆a
,

βni,j,l,m =
sni,j,l,m,B1sni,j,l,m,B<0 − sni,j,l,m,F1sni,j,l,m,F>0

∆a
− λi

−
hl,m(−1hl,m<0 + 1hl,m>0)

∆K
−
θ(Z̄ − Zm)(−1Z̄−Zm<0 + 1Z̄−Zm>0)

∆Z
− σ2

(∆Z)2
,

ξni,j,l,m =
sni,j,l,m,F1sni,j,l,m,F>0

∆a
,

αnK,l,m = −
hl,m1hl,m<0

∆K
,

ξnK,l,m =
hl,m1hl,m>0

∆K
,

αnZ,m = −
θ(Z̄ − Zm)1Z̄−Zm<0

∆Z
+

σ2

2(∆Z)2
,

ξnZ,m =
θ(Z̄ − Zm)1Z̄−Zm>0

∆Z
+

σ2

2(∆Z)2
.

This equation is a system of 2× J ×L×M linear equations and can be stacked into matrix forms

as

1

∆
(vn+1 − vn) + ρvn+1 = un + Anvn+1 (10)

where

An = −



An
1 αnZ,1I2J×L 02J×L · · · 02J×L 02J×L

ξnZ,2I2J×L An
2 αnZ,2I2J×L · · · 02J×L 02J×L

02J×L ξnZ,3I2J×L An
3 · · · 02J×L 02J×L

...
. . .

. . .
. . .

. . .
...

ξnZ,M−1I2J×L An
M−1 αnZ,M−1I2J×L

02J×L 02J×L · · · 02J×L ξnZ,MI2J×L An
M


,
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An
m = −



An
1,m αnK,1,mI2J 02J · · · 02J 02J

ξnK,2,mI2J An
2,m αnK,2,mI2J · · · 02J 02J

02J ξnK,3,mI2J An
3,m · · · 02J 02J

...
. . .

. . .
. . .

. . .
...

ξnK,L−1,mI2J An
L−1 αnK,L−1,mI2J

02J 02J · · · 02J ξnK,L,mI2J An
L


,

An
l,m =−



βn1,1,l,m ξn1,1,l,m 0 λ1

αn1,2,l,m βn1,2,l,m ξn1,2,l,m 0 λ1

0 αn1,3,l,m βn1,3,l,m ξn1,3,l,m 0 λ1

. . .
. . .

. . .
. . .

0 0 αn1,J,l,m βn1,J,l,m 0 λ1

λ2 0 βn2,1,l,m ξn2,1,l,m 0

λ2 αn2,2,l,m βn2,2,l,m ξn2,2,l,m 0

λ2 0 αn2,3,l,m βn2,3,l,m ξn2,3,l,m 0

. . .
. . .

. . .
. . .

λ2 0 0 αn2,J,l,m βn2,J,l,m



,

and

un =



un1

un2
...

unM


,vn =



vn1

vn2
...

vnM


,unm =



un1,m

un2,m
...

unL,m


,vnm =



vn1,m

vn2,m
...

vnL,m


,

21



unl,m =



(cn1,1,l,m)1−γ

1−γ
(cn1,2,l,m)1−γ

1−γ
...

(cn1,J,l,m)1−γ

1−γ
(cn2,1,l,m)1−γ

1−γ
...

(cn2,J,l,m)1−γ

1−γ



,vnl,m =



vn1,1,l,m

vn1,2,l,m
...

vn1,J,l,m

vn2,1,l,m
...

vn2,J,l,m



.

Given vn, the system can be solved for vn+1. An iterative procedure can be applied to (10) to

obtain a converged v = vn
∗

where n∗ is such that
∥∥vn∗+1 − vn

∗∥∥ is below a very small number.

We also define the transition matrix without the derivatives with regard to K and Z

Ã
n
l,m = −



β̃n1,1,l,m ξn1,1,l,m 0 λ1

αn1,2,l,m β̃n1,2,l,m ξn1,2,l,m 0 λ1

0 αn1,3,l,m β̃n1,3,l,m ξn1,3,l,m 0 λ1

. . .
. . .

. . .
. . .

0 0 αn1,J,l,m β̃n1,J,l,m 0 λ1

λ2 0 β̃n2,1,l,m ξn2,1,l,m 0

λ2 αn2,2,l,m β̃n2,2,l,m ξn2,2,l,m 0

λ2 0 αn2,3,l,m β̃n2,3,l,m ξn2,3,l,m 0

. . .
. . .

. . .
. . .

λ2 0 0 αn2,J,l,m β̃n2,J,l,m



,

where

β̃ni,j,l,m =
sni,j,l,m,B1sni,j,l,m,B<0 − sni,j,l,m,F1sni,j,l,m,F>0

∆a
− λi,

which is used when solving the Kolmogorov Forward equation for simulation.
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D Solving the Kolmogorov Forward equation for simulation

In the outer loop in the KS algorithm and nonlinear simulation in all the algorithms to obtain

the sequence of {K∗t }, we solve the Kolmogorov Forward (KF) equation with an infinite difference

scheme. In the XPA and KS algorithms, we use a converged Ãl,m = Ã
n∗

l,m at each grid point of

(Kl, Zm) in the inner loop above for the transition matrix of the wealth–productivity density. Note

that we exclude the direct effect of aggregate variables K and Z (i.e., the derivatives with regard

to K and Z) on the transition matrix for simulation.

The law of motion of the wealth–productivity density is expressed as a form of the KF equation

gt+1,i,j − gt,i,j
∆t

=− ∂ast(aj , zi)gt+1,i,j − λigt+1,i,j + λigt+1,−i,j (11)

This equation can be expressed as a matrix form

gt+1 − gt = ∆tΓtgt+1 (12)

where gt = [gt,1,1, gt,1,2, ..., gt,1,J , gt,2,1, ..., gt,2,J ]T is a vector of the wealth–productivity density at

grid points of (aj , zi) and Γt is a transition matrix.

In the XPA and KS algorithms, we have already obtained a converged matrix in the inner loop

for Γt.
15 As (Kt, Zt) in simulation may not be on grid points of (Kl, Zm) used in the inner loop,

we use bilinear interpolation of matrices at the nearest four grid points. That is, Γt = Ã
T
t is the

transpose of

Ãt =(1− ωZ,t)((1− wK,t)Ãl∗,m∗ + wK,tÃl∗+1,m∗)

+ wZ,t((1− wK,t)Ãl∗,m∗+1 + wK,tÃl∗+1,m∗+1)

where wK,t = (Kt −Kl∗)/(Kl∗+1 −Kl∗) and wZ,t = (Zt − Zm∗)/(Zm∗+1 − Zm∗) and each of l∗,m∗

satisfies Kt ∈ [Kl∗ ,Kl∗+1] or Zt ∈ [Zm∗ , Zm∗+1] at each period t.

15See FVHN for more details.
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Difference from FVHN FVHN solve the HJB equation with the upwind scheme only for a in

the KS algorithm. We find that using the upwind scheme not only for a but also for K and Z is

necessary for the XPA algorithm. We find that it is also important to improve the KS algorithm

in terms of the R–squared and the Den Haan errors as shown in Table 2.

When FVHN solve the KF equation in a form of (12) in the KS algorithm, they use a converged

Al,m = An∗
l,m (without tilde) including the terms of derivatives with K and Z as the transition

matrix of the wealth–productivity density. We exclude these terms as it is more consistent with the

nonlinear simulation for the REITER algorithm as explained in Appendix E. However, compared

with the upwind scheme mentioned above, we find that this has only a marginal effect.

Table 2: Den Haan errors: alternative methods for the KS algorithm

a. Our approach

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH KS (%) 0.002 0.015 0.097 0.134 0.493 0.885

εMEAN
DH KS (%) 0.001 0.011 0.075 0.104 0.286 0.438

R2 0.999 0.999 0.999 0.999 0.999 0.998

b. Alternative approach (as in FVHN)

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH KS (%) 0.005 0.047 0.322 0.456 1.349 2.463

εMEAN
DH KS (%) 0.001 0.012 0.084 0.120 0.364 0.627

R2 0.994 0.994 0.994 0.993 0.991 0.988

E Den Haan errors for the REITER algorithm

As in Ahn et al. (2018); Bayer and Luetticke (2020), to obtain the sequence of {K∗t } in the RE-

ITER algorithm, we solve for the optimal savings plan s∗t (aj , zi) at every pair of the wealth and

productivity values (aj , zi) in the histogram under the equilibrium factor prices (wt, rt) in every
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period t.16 To solve for the policy function of savings, we utilize the value function obtained in the

solution with linearization.17 Then we calculate the transition matrix for the law of motion of the

wealth–productivity density (i.e., Γt in (12)) from the policy function.

First, we calculate the optimal savings plan s∗t,i,j = s∗t (aj , zi) at each grid point in period t for

the KF equation (11). Having the current aggregate state {gt,i,j} and Zt, we have

Kt =
∑
i

∑
j

ajgt,i,j ,

wt = (1− α)eZt(Kt/Lt)
α,

rt = αeZt(Kt/Lt)
α−1 − δ.

From the household’s budget constraint, we have savings as st,i,j = st(aj , zi) = wtzi + rtaj − ct,i,j .

Having the value function from the linearized solution at each grid point at date t, denoted by

{ṽt,i,j}, we also have the optimal value of consumption at each (aj , zi):

c∗t,i,j = c∗t (aj , zi) = (∂aṽt,i,j)
−γ . (13)

We use the upward scheme to approximate the derivative of the value function as well. Therefore,

s∗t,i,j,F =wtzi + rtaj −

[
1

∂
(F )
a ṽt,i,j

]1/γ

,

s∗t,i,j,B =wtzi + rtaj −

[
1

∂
(B)
a ṽt,i,j

]1/γ

,

where

∂(F )
a ṽt,i,j =

ṽt,i,j+1 − ṽt,i,j
∆a

,

∂(B)
a ṽt,i,j =

ṽt,i,j − ṽt,i,j−1

∆a
,

16In general, we need to solve for the equilibrium prices that clear markets. The market clearing condition for
capital is met in the first place in our case with the standard Krusell-Smith model.

17Bayer and Luetticke (2020) solve the optimization problem by utilizing the expected value function that is
obtained in the solution with linearization.
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Then, Equation (11) can be rearranged as

gt+1,i,j − gt,i,j
∆t

=αt,i,jgt+1,i,j+1 + βt,i,jgt+1,i,j + ξt,i,jgt+1,i,j−1 + λ−igt+1,−i,j

where

αt,i,j =
−s∗t,i,j,B1s∗t,i,j,B<0

∆a
,

βt,i,j =
s∗t,i,j,B1s∗t,i,j,B<0 − s∗t,i,j,F1s∗t,i,j,F>0

∆a
− λi,

ξt,i,j =
s∗t,i,j,F1s∗t,i,j,F>0

∆a
.

This equation can be stacked into a matrix form as Equation (12) such that

Γt =



βt,1,1 ξt,1,1 0 λ1

αt,1,2 βt,1,2 ξt,1,2 0 λ1

0 αt,1,3 βt,1,3 ξt,1,3 0 λ1

. . .
. . .

. . .
. . .

0 0 αt,1,J βt,1,J 0 λ1

λ2 0 βt,2,1 ξt,2,1 0

λ2 αt,2,2 βt,2,2 ξt,2,2 0

λ2 0 αt,2,3 βt,2,3 ξt,2,3 0

. . .
. . .

. . .
. . .

λ2 0 0 αt,2,J βt,2,J



T

.

F Further numerical results

Benchmark parameters

We use the parameters in Table 3 in the benchmark case, following those used in Ahn et al. (2018).

Later, we change the volatility and persistence parameters of the TFP to examine its effect on the

accuracy of solving the model between different algorithms. We set the range of grid points for K
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as [0.8K̄, 1.2K̄] where K̄ is the value of aggregate capital in the deterministic steady state. The

range of grid points for Z is [−m̄σ, m̄σ] where m̄ is a real number. We set m̄ = 4. We divide the

state space of (Kl, Zm) by 3 grid points for each.

Table 3: Parameter values

Parameters Benchmark Value

γ : Relative Risk Aversion 1.0
ρ : Rate of Time Preference 0.01
α : Capital Share 0.36
δ : Rate of Capital Depreciation 0.025
τ : Tax Rate of Labor Income 0.011
b : Rate of Compensation 0.15
1− µ : Persistence of TFP 0.75
σ : Volatility of TFP 0.07
z : Idiosyncratic of Labor Productivity zu = 0, ze = 1
λ : Probability of Labor Productivity λe = 0.50, λu = 0.03

In Figure 4, we show the results of the simulation path in XPA. The red line {K̃t}t∈[0,T ] in the

figure shows the simulation obtained only from the forecasting rule for 10000 periods, while the blue

line {K∗t }t∈[0,T ] shows the simulation obtained from the nonlinear model including the household

HJB equation (with the forecasting rule) and the Kolmogorov Forward equation for 10000 periods.

This is known as the Den haan’s (2010) fundamental plot showing the accuracy of the solution. It

is clear from the figure that the capital paths resulting from these simulations are very close.18

18If the red and blue lines are close, households approximately act according to the correct forecasting rule. If not,
households are using the wrong forecasting rule. Therefore, the divergence between the two lines indicates that the
model is not solved correctly based on rational expectations.
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Figure 4: Simulation path in XPA (Den haan’s fundamental plot)
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We also check the robustness of our results with respect to the persistence of TFP. In Table 4,

we show that the Den haan errors of KS, XPA, and REITER when the persistence of TFP, 1− µ,

is lowered from µ = 0.25 to µ = 0.5 or µ = 0.75. It is clear that, regardless of the persistence,

the Den haan errors of XPA are smallest compared to those of REITER and KS when aggregate

uncertainty is large.
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Table 4: Den Haan errors: robustness

a. Case of µ = 0.25 (benchmark)

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH XPA (%) 0.001 0.011 0.084 0.125 0.336 0.580

εMEAN
DH XPA (%) 0.000 0.004 0.028 0.038 0.091 0.140

εMAX
DH KS (%) 0.002 0.015 0.097 0.134 0.493 0.885

εMEAN
DH KS (%) 0.001 0.011 0.075 0.104 0.286 0.438

εMAX
DH REITER (%) 0.000 0.003 0.144 0.387 4.379 9.759

εMEAN
DH REITER (%) 0.000 0.002 0.106 0.273 3.381 7.546

a. Case of µ = 0.50

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH XPA (%) 0.001 0.008 0.048 0.062 0.157 0.308

εMEAN
DH XPA (%) 0.000 0.003 0.019 0.024 0.053 0.083

εMAX
DH KS (%) 0.001 0.009 0.059 0.083 0.278 0.483

εMEAN
DH KS (%) 0.001 0.007 0.044 0.060 0.155 0.235

εMAX
DH REITER (%) 0.000 0.001 0.069 0.155 2.431 5.961

εMEAN
DH REITER (%) 0.000 0.001 0.057 0.126 1.989 4.864

b. Case of µ = 0.75

Agg Shock σ (%) 0.01 0.1 0.7 1.0 3.0 5.0

εMAX
DH XPA (%) 0.001 0.006 0.040 0.052 0.110 0.185

εMEAN
DH XPA (%) 0.000 0.003 0.017 0.022 0.041 0.055

εMAX
DH KS (%) 0.001 0.006 0.042 0.059 0.200 0.350

εMEAN
DH KS (%) 0.001 0.005 0.031 0.043 0.107 0.163

εMAX
DH REITER (%) 0.000 0.001 0.046 0.097 1.593 4.263

εMEAN
DH REITER (%) 0.000 0.001 0.039 0.081 1.312 3.537
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