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Abstract

This paper applies the explicit aggregation (XPA) algorithm to the standard het-

erogeneous agent model with aggregate uncertainty in continuous time. We find that

the XPA algorithm is faster in solving the model than the Krusell–Smith algorithm,

because the XPA algorithm does not rely on simulations to solve the model. The XPA

algorithm is more accurate than the perturbation method when aggregate uncertainty

is large.
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1 Introduction

There is more interest in heterogeneous agent macro models than ever before. Recent studies

such as Achdou et al. (2017) and Ahn et al. (2018) apply newly developed numerical methods

to solve heterogeneous agent models in continuous time. In particular, Ahn et al. (2018) study

heterogeneous agent models with aggregate uncertainty in continuous time and are able to solve

the model quickly. However, there are some challenges to their approach. First, their method solves

the model using a linear approximation and thus does not capture nonlinear effects of aggregate

uncertainty. Second, because of the linearization, the accuracy of solving the model is significantly

compromised when aggregate uncertainty is large and/or the model itself is highly nonlinear.

We present an alternative numerical method to address the issues mentioned above. We intro-

duce the explicit aggregation (XPA) algorithm of den Haan and Rendahl (2010) into the standard

heterogeneous agent model with aggregate shocks of Krusell and Smith (1998) in continuous time.

Then we compare the XPA algorithm in terms of accuracy and efficiency with the Krusell–Smith

(KS) algorithm using simulations and the Reiter–Ahn (REITER) algorithm using perturbations

around the deterministic steady state.1

We find that, compared with the KS algorithm, the XPA algorithm is faster than and as accurate

as the KS algorithm in solving the standard Krusell–Smith model. Compared with the REITER

algorithm, the XPA algorithm can solve the model nearly as quickly as the REITER algorithm

does, and is more accurate than the REITER algorithm, especially when aggregate uncertainty is

large.

Our study is closely related to at least two areas of research. One is the literature on the XPA

algorithm. den Haan and Rendahl (2010) is the first paper to apply this method to the standard

heterogeneous agent model in Krusell and Smith (1998). Sunakawa (2020) applies their approach

to some other heterogeneous agent models such as Khan and Thomas (2003, 2008) and Krueger

et al. (2016) in discrete time. To the best of our knowledge, the present paper is the first to

apply the XPA algorithm to the standard heterogeneous agent model with aggregate uncertainty

in continuous time.

1Although we focus on these algorithms, some other useful algorithms are also found in den Haan et al. (2010).
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The other is the research on methods to solve heterogeneous agent models with aggregate

shocks in continuous time. The pioneering research in this area is Ahn et al. (2018). They adapt

the perturbation method originally developed by Reiter (2009) to heterogeneous agent models with

aggregate shocks in continuous time.2 Fernández-Villaverde et al. (2019) propose a neural-network

algorithm to solve heterogeneous agent models with aggregate shocks in continuous time. Our

algorithm, unlike Fernández-Villaverde et al. (2019) and the standard KS algorithm, solves the

model without using simulations. Furthermore, whereas the REITER algorithm solves the model

using a linear approximation, our algorithm solves the model nonlinearly so as to capture nonlinear

effects of aggregate uncertainty.3 Furthermore, as we will discuss later, the accuracy of solving

the model is much higher than what is reported in Ahn et al. (2018), especially when aggregate

uncertainty is large. Our results also hold for different degrees of persistence of the aggregate shock.

The paper consists of the following sections. In Section 2, we apply the XPA algorithm, as well

as the KS and REITER algorithms, to the Krusell and Smith (1998) model in continuous time.

In Section 3, we compare the results of the three algorithms, XPA, KS, and REITER, in terms of

accuracy and efficiency. Finally, Section 4 concludes.

2 Algorithms

We apply the XPA algorithm first developed by den Haan and Rendahl (2010) to the Krusell

and Smith (1998) model in continuous time as studied by Ahn et al. (2018). We choose the

Krusell–Smith model as it is known as one of the most popular heterogeneous agent models with

aggregate uncertainty. Applying the XPA algorithm to other models is also straightforward as

shown in Sunakawa (2020). In the model, there are a representative firm, and a government, and

heterogeneous households whose asset holdings and productivity are different from each other. As

the model is well known, we defer the details of the model to the Appendix A.

2Reiter (2010a); Ahn et al. (2018) further develop a method to reduce the dimension of the state space by
projecting the distribution onto principal components. Bayer and Luetticke (2020) and Childers (2018) also suggest
novel approaches using linearization.

3Reiter’s (2010b) backward induction method can also be applied to solve heterogeneous agent models nonlinearly.
The method is applied to the stochastic overlapping generations model with aggregate uncertainty of Khan (2017);
Kim (2018). Okahata (2018) demonstrates that the method can also be merged with the continuous-time methods
in Ahn et al. (2018).
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The XPA algorithm assumes approximate aggregation (Young, 2005) as the KS algorithm as-

sumes so that the wealth distribution is approximated by the mean. In contrast with the KS

algorithm, the XPA algorithm calculates the forecasting rules without simulations.

Both the XPA and KS algorithms require two types of calculations, the inner loop and the outer

loop. The inner loop calculation is common between the XPA and KS algorithms.4 In continuous

time models, the finite difference method is used to solve the Hamilton–Jacobi–Bellman (HJB)

equation as in Achdou et al. (2017). Given the forecasting rule K̇ = Γ(K,Z), we solve the HJB

equation

ρv(a, z,K,Z) = max
c
u(c) + va(a, z,K,Z)ȧ

+ λz(v(a, z′,K, Z)− v(a, z,K,Z)) + vK(a, z,K,Z)K̇

+ vz(a, z,K,Z)(−µZ) +
σ2

2
vzz(a, z,K,Z) (1)

for the policy function of household savings, s(a, z,K,Z).

In the outer loop, the policy function s(a, z,K,Z) obtained in the inner loop is used to obtain

the forecasting rule for the next period’s aggregate capital as follows

K̇ = Γ(K,Z)

=
∑
z

∫
a
s(a, z;K,Z)g(a, z)da. (2)

The XPA and KS algorithms are different in how they represent Equation (2). In the XPA

algorithm, the forecasting rule is

ΓXPA(K,Z) =
∑
z

{s(K(z), z,K,Z) + ξ(z)}φ(z),

where K(z) is capital conditioned on labor productivity, z, φ(z) =
∫
g(a, z)da is the proportion of

4Fernández-Villaverde et al. (2019) describes the KS algorithm in continuous time in detail. In particular, they
solve the standard Krusell–Smith model in continuous time using the KS algorithm.
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households with z, and ξ(z) is for correcting the biases due to Jensen’s inequality. These objects

can be calculated immediately when we compute the steady state. That is, to obtain the forecasting

rule, we just need to evaluate the policy function at a = K(z). The value of K(z) may not be on

the grid of a, so we use linear interpolation. In Appendix B, we explain the details of the XPA

algorithm following den Haan and Rendahl (2010) and Sunakawa (2020).

In the KS algorithm, we simulate the model to obtain the total factor productivity (TFP)

sequence Zt and the mean of the wealth distribution Kt at each point in time. Then the forecasting

rule is obtained by estimating the following forecasting rule using the simulated sequence of {Kt, Zt}.

ΓKS(K,Z) = β0 + β1 lnK + β2 lnZ,

where (β0, β1, β2) are coefficients estimated by ordinary least squares.

The REITER algorithm also differs from the XPA and KS algorithms in that the approximate

aggregation does not hold. Instead, the REITER algorithm linearizes the model around the deter-

ministic steady state and uses the system of linearized equations to solve for the dynamics of the

economy in the event of aggregate shocks. See Ahn et al. (2018) for more details.

3 Numerical results

We compare the numerical results from three algorithms; XPA algorithm, KS algorithm, and

REITER algorithm. First, we illustrate the property of the forecasting rules obtained by XPA and

KS. Then, we demonstrate the simulation results for XPA, KS, and REITER. After that, we discuss

the computation time for each algorithm and the accuracy using the Den haan Error proposed by

den Haan (2010).5

Benchmark parameters

We use the parameters in Table 1 in the benchmark case, following those used in Ahn et al. (2018).

Later, we change the volatility and persistence parameters of the TFP to examine its effect on the

5We use the code used in Fernández-Villaverde et al. (2019) for KS and the code used in Ahn et al. (2018) for
REITER. Both of the codes are modified to use the same set of parameters simply for the purpose of comparison.
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accuracy of solving the model between different algorithms.

Table 1: Parameter values

Parameters Benchmark Value

γ : Relative Risk Aversion 1.0
ρ : Rate of Time Preference 0.01
α : Capital Share 0.36
δ : Rate of Capital Depreciation 0.025
τ : Tax Rate of Labor Income 0.011
b : Rate of Compensation 0.15
µ : Persistence of TFP 0.25
σ : Volatility of TFP 0.07
z : Idiosyncratic of Labor Productivity zu = 0, ze = 1
λ : Probability of Labor Productivity λe = 0.50, λu = 0.03

3.1 Forecasting rules

In Figure 1, we show the forecasting rule K̇(K,Z) in KS and XPA. As is clear from the figure, there

is no significant difference in the forecasting rules obtained by each algorithm. Each forecasting rule

is characterized by a decreasing function with respect to capital K and an increasing function with

respect to TFP Z. Furthermore, the slope of the forecasting rule with regard to K is flatter than

the 45-degree line as is the case in the standard neoclassical growth model. Thus, with respect to

capital, if there is more (less) capital in the current period than in the steady state, K̇ is negative

(positive) and households will expect the future capital stock to decrease (increase). Furthermore,

if TFP is high (low), K̇ is positive (negative) and households expect their capital stock to increase

(decrease).

3.2 Simulation paths

Next, we compare the capital paths obtained from the simulation results in KS, XPA, and REITER.

In the left panel of Figure 2, we show the results of the simulation path derived from the full model

(i.e., the forecasting rule and household HJB equation) for 10000 periods in KS, XPA, and REITER.

The blue line in the figure shows the capital path by XPA, the red line shows the capital path by

KS, and the black line indicates the path by REITER. It is clear from the figure that the capital
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Figure 1: Forecasting rules

paths obtained from each algorithm are very similar, except for REITER when capital is low.

XPA and KS solve the model nonlinearly, whereas REITER solves the model by linear approx-

imation. As the law of motion for aggregate capital is concave, the error between the simulation

results of the nonlinear methods (XPA and KS) and the linear method (REITER) is small when

capital is high. However, when capital is low, the error between the simulation results of the non-

linear and linear methods is large. Thus, in the right panel of Figure 2, we show that the simulation

path of REITER diverges from those of XPA and KS as the value of capital decreases.

3.3 Efficiency

Table 2 summarizes the time that it takes to solve the model with each algorithm. Comparing

the results of XPA and KS, we can see that XPA solves the model much faster than KS because

it does not use simulations. Comparing the computation times of XPA and REITER, we can see

that REITER is slightly faster than XPA. However, the difference between the two is not that large

(XPA: 2.4 seconds vs. REITER: 0.5 seconds).6

6Note that we use MATLAB and no parallelization, so the gap might be smaller when we use a faster language
and/or parallelization.
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Figure 2: Simulation paths

Table 2: Computation time

Algorithm Computation time
XPA (Our method) 2.478 sec

Krusell-Smith 122.101 sec
REITER (Ahn et al., 2018) 0.501 sec

Notes: Computations are done on a laptop with Intel Core i7-9750H and 16GB RAM using MAT-
LAB R2019a.

3.4 Accuracy

The accuracy of solving the model is discussed using the Den haan errors proposed by den Haan

(2010). If the Den haan errors are large in one algorithm, the model solution using this method

is not accurate because households are acting based on an erroneous forecasting rule. In this

study, we simulate 10000 time periods with each algorithm and use the results from {K∗t }t∈[0,T ]

and {K̃t}t∈[0,T ] to measure the Den haan errors

εMAX
DH ≡ 100 · max

t∈[0,T ]
| ln K̃t − lnK∗t |,

εMEAN
DH ≡ 100 ·

∑
t∈[0,T ] | ln K̃t − lnK∗t |

T
.
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Table 3 and Figure 3 summarize the Den haan errors for each algorithm. It is clear from the

table that when aggregate uncertainty is small, i.e., when σ is low, there is not much difference in

the Den haan errors for each algorithm. However, when aggregate uncertainty is large, i.e., when

σ is large, the Den haan errors for REITER are considerably larger than those for XPA and KS.

Therefore, it is clear that XPA is able to compute the model more accurately than REITER when

aggregate uncertainty is large. Furthermore, in the benchmark case, the Den Haan errors of XPA

are smaller than those of KS when the volatility of TFP is σ = 5.0%.7

Table 3: Den Haan errors

Agg Shock σ 0.01% 0.1% 0.7% 1.0% 5.0%

εMAX
DH XPA 0.000% 0.009% 0.071% 0.101% 0.571%

εMEAN
DH XPA 0.000% 0.002% 0.016% 0.024% 0.136%

εMAX
DH KS 0.000% 0.004% 0.035% 0.058% 0.945%

εMEAN
DH KS 0.000% 0.003% 0.023% 0.037% 0.690%

εMAX
DH REITER 0.000% 0.001% 0.044% 0.093% 4.193%

εMEAN
DH REITER 0.000% 0.001% 0.038% 0.078% 3.477%

Notes: For each value of σ, we adjust the values of the grid so that the maximum and minimum
values of the capital stock obtained in the simulation are within the range of the grid of the capital
stock.

7We also confirm that our results hold when the persistence of TFP, 1− η, is lowered so that η = 0.5 or η = 0.75.
See Appendix C.
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Figure 3: Comparison of Den Haan errors

4 Conclusion

In this paper, we apply the explicit aggregation (XPA) algorithm proposed by den Haan and

Rendahl (2010) to the standard heterogeneous agent model with aggregate uncertainty (Krusell

and Smith, 1998) in continuous time.

We find that, compared with the popular REITER algorithm for solving the heterogeneous

agent model with aggregate uncertainty in continuous time, the XPA algorithm is able to solve the

model almost as fast as the REITER algorithm, and more accurately than this algorithm in the

case when aggregate uncertainty is large.

In our future research, we will apply our algorithm to the heterogeneous agent New Keynesian

model (e.g., Bayer et al., 2019; Gornemann et al., 2016; Kaplan et al., 2018) in continuous time

with a zero lower bound (ZLB) on nominal interest rates as the XPA algorithm can deal with

uncertainty stemming from future exogenous shocks and ZLB (Nakata, 2017). Furthermore, Terry
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(2017) shows that the model can be solved more accurately by using a projection method like

our method, rather than a perturbation method, when there is a dependency between aggregate

uncertainty and idiosyncratic risk. Our algorithm can be applied when this is the case. In these

applications, our algorithm will be even more interesting and useful than other algorithms.
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Appendix (not for publication)

A The Krusell–Smith model in continuous time

A.1 Environments

Households

Households face idiosyncratic uncertainty regarding labor productivity and the borrowing constraint

at ≥ 0. There are two states of labor productivity for each household, ze and zu, which follow the

Poisson process with arrival rates λe and λu. ze shows that the household is employed and zu

indicates that the household is unemployed.

If the household is employed, she/he receives labor income after taxation (1 − τ)wt. When

the household is unemployed, she/he receives unemployment insurance bwt financed by the labor

income tax.

Each household chooses their consumption in each period to maximize their expected life-time

utility by taking the wage rate wt and the interest rate rt as given.

v = maxE0

[∫ ∞
0

e−ρt
c1−θt

1− θ
dt

]
,

s.t. dat = (rtat + (1− τ)ztwt + (1− zt)bwt − ct)dt, at ≥ 0,

zt ∈ {ze, zu}, ze = 1, zu = 0.

The instantaneous utility function is of constant-relative-risk-aversion form, ρ is the rate of time

preference, and θ is the degree of relative risk aversion.

Firm

The representative firm produces the final good Yt using capital Kt and labor Lt. The production

function is Cobb–Douglas form

Yt = eZtKα
t N

1−α
t ,
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where α is the capital share. Zt is the logarithm of total factor productivity (TFP) following the

Ornstein–Uhlenbeck process

dZt = η(Z̄ − Zt)dt+ σdWt, Z̄ = 0,

where dWt follows a Wiener process. η is the persistence of TFP and σ is the volatility of the TFP.

This process is similar to an AR(1) process in discrete time.

The wage rate and the interest rate are obtained from the first-order conditions for the profit

maximization problem as follows:

wt = (1− α)eZtKα
t N
−α
t , rt = αeZtKα−1

t N1−α
t − δ,

where δ is the depreciated rate of capital.

Government

The government imposes a tax on labor income to finance unemployment compensation. The

government’s budget is balanced as below

τwµe = bwµu.

That is, the government’s tax revenue from labor income is equal to the government’s expenditure

to finance unemployment insurance. µe = φ(ze) is the share of employment and µu = φ(zu) is the

share of unemployment in the economy.

A.2 Stationary equilibrium without aggregate uncertainty

We define the steady state without aggregate uncertainty by setting Zt = 0 for all t ≥ 0. In the

steady state without aggregate uncertainty, the following equations are satisfied:
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• The Hamilton–Jacobi–Bellman (HJB) equation and the policy function for households

ρv(a, z) = max
c
u(c) + va(a, z)(ra+ (1− τ)zw + (1− z)bw − c) + λz(v(a, z′)− v(a, z))

s(a, z) = ra+ (1− τ)zw + (1− z)bw − c(a, z)

• The Fokker–Planck equation

0 =
∂(s(a, z)g(a, z))

∂a
− λzg(a, z) + λz′g(a, z′)

• The wage rate and the interest rate

w = (1− α)KαL−α, r = αKα−1L1−α − δ

• The government’s budget constraint

τwµe = bwµu, µe =

∫
g(a, ze)da, µu =

∫
g(a, zu)da,

• The capital and the labor markets clear

K =
∑
z

∫
ag(a, z)da, L =

∑
z

∫
zg(a, z)da

B Details of the XPA algorithm

We provide details of the XPA algorithm following den Haan and Rendahl (2010) and Sunakawa

(2020). First, we rewrite the wealth distribution g(a, z) using the conditional probability as

g(a|z) =
g(a, z)∫
g(a, z)da

=
g(a, z)

φ(z)

⇔ g(a, z) = g(a|z)φ(z)

16



where φ(z) =
∫
g(a, z)da is equal to the proportion of households with labor productivity z in the

economy.8 Then we can rewrite the forecasting rule using the conditional distribution of wealth as

K̇(K,Z) =
∑∫

s(a, z;K,Z)g(a, z)da

≈
∑

s

(∫
ag(a|z)da, z;K,Z

)
φ(z)

=
∑

s(K(z), z;K,Z)φ(z)

where K(z) =
∫
ag(a|z)da is capital conditioned on labor productivity z. We compute K(z) by

the following equations:

K(z) = ψ(z)Kss, ψ(z) ≡ Kss(z)

Kss
=

Kss(z)∑
z

∫
agss(a, z)da

,

Kss(z) =

∫
agss(a|z)da =

∫
agss(a, z)da

φ(z)
,

where Kss and gss are capital and wealth distribution at the steady state without aggregate uncer-

tainty. Note that the ratio of the capital conditioned on z to aggregate capital, ψ(z) = Kss(z)/Kss,

can be easily obtained in the steady-state calculation.9

Moreover, following den Haan and Rendahl (2010), we conduct bias correction. In the explicit

aggregation, we assume that the household’s policy function s(a, z;K,Z) is linear at a = K(z)

so that
∫
s(a, z;K,Z)g(a|z)da ≈ s (K(z), z;K,Z) holds. Therefore, there may be bias in the

forecasting rule from Jensen’s inequality. We compute the steady-state counterparts to correct the

bias:

ξ(z) = K̇ss(z)− sss(Kss(z), z),

K̇ss(z) =

∫
sss(a, z)gss(a|z)da =

∫
sss(a, z)gss(a, z)da

φ(z)
.

Again, ξ(z) can be computed at negligible cost in the steady state. Finally, we can write the

8We assume the share of employment φ(ze) (= 1−φ(zu)) is time-invariant, although it is straightforward to make
the employment measure be time-variant and depend on aggregate uncertainty as in Krusell and Smith (1998).

9We assume that ψ(z) is constant even with aggregate uncertainty. The details of the steady-state calculations
are found in Appendix A.2.
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forecasting rule as follows

K̇(K,Z) =
∑
z

{s(K(z), z,K,Z) + ξ(z)}φ(z).

That is, to obtain the forecasting rule, we just need to evaluate the policy function at a = K(z).

The value of K(z) may not be on the grid of a, so we use linear interpolation.

Summary of XPA Algorithm

In summary, we perform computations to solve the Krusell–Smith model with the XPA algorithm

as follows. As mentioned above, the XPA algorithm is fast because it does not use any simulations.

1. Compute the deterministic steady state without aggregate uncertainty to obtain the con-

ditional capital ratio ψ(z) and the bias correction term for correcting the forecasting rule

ξ(z).

2. (Inner loop) Solve the HJB equation for the policy function taking the forecasting rule as

given.

3. (Outer loop) Compute the forecasting rule without simulations taking the policy function as

given. The bias correction is also done.

4. Repeat steps 2–3 until the forecasting rule converges.

C Further numerical results

In Figure 4, we show the results of the simulation path in XPA. The red line {K̃t}t∈[0,T ] in the

figure shows the simulation obtained only from the forecasting rule for 10000 periods, while the

blue line {K∗t }t∈[0,T ] shows the simulation obtained from the full model including the forecasting

rule and the household HJB equation for 10000 periods.10 This is known as the Den haan’s (2010)

10The time interval dt = 0.25 used in the simulation is the same as the time interval of Ahn et al. (2018). We use
linear interpolation for aggregate capital and TFP to calculate the wealth distribution at each point of time.
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Figure 4: Simulation path in XPA (Den haan’s fundamental plot)

fundamental plot showing the accuracy of the solution. It is clear from the figure that the capital

paths resulting from these simulations are very close.11

We also check the robustness of our results with respect to the persistence of TFP. In Table 4,

we show that the Den haan errors of KS, XPA, and REITER when the persistence of TFP, 1− η,

is lowered so that η = 0.5 or η = 0.75. It is clear that, regardless of the persistence, the Den haan

errors of REITER are larger than those of XPA and KS when aggregate uncertainty is large.12

11If the red and blue lines are close, households approximately act according tothe correct forecasting rule. If not,
households are using the wrong forecasting rule. Therefore, the divergence between the two lines indicates that the
model is not solved correctly based on rational expectations.

12However, unlike in the benchmark case of η = 0.25, the Den Haan errors of XPA are larger than that of KS when
the volatility of TFP is σ = 5% and η = 0.5 or η = 0.75.
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Table 4: Den Haan errors: robustness

a. Case of η = 0.50

Agg Shock σ 0.01% 0.1% 0.7% 1.0% 3.0% 5.0%

εMAX
DH XPA 0.002% 0.019% 0.143% 0.198% 0.607% 1.051%

εMEAN
DH XPA 0.000% 0.005% 0.039% 0.054% 0.163% 0.301%

εMAX
DH KS 0.000% 0.002% 0.021% 0.034% 0.220% 0.432%

εMEAN
DH KS 0.000% 0.001% 0.007% 0.010% 0.049% 0.185%

εMAX
DH REITER 0.000% 0.001% 0.067% 0.150% 2.387% 5.862%

εMEAN
DH REITER 0.000% 0.001% 0.055% 0.121% 1.953% 4.778%

b. Case of η = 0.75

Agg Shock σ 0.01% 0.1% 0.7% 1.0% 3.0% 5.0%

εMAX
DH XPA 0.003% 0.038% 0.276% 0.399% 1.110% 1.980%

εMEAN
DH XPA 0.001% 0.012% 0.089% 0.129% 0.378% 0.669%

εMAX
DH KS 0.000% 0.007% 0.059% 0.096% 0.439% 0.994%

εMEAN
DH KS 0.000% 0.002% 0.012% 0.018% 0.094% 0.212%

εMAX
DH REITER 0.000% 0.003% 0.140% 0.376% 4.301% 9.591%

εMEAN
DH REITER 0.000% 0.002% 0.102% 0.264% 3.317% 7.407%
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