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Abstract

This paper applies the explicit aggregation (Xpa) algorithm developed by den Haan and

Rendahl [2010. Solving the incomplete markets model with aggregate uncertainty using explicit

aggregation. Journal of Economic Dynamics and Control, 69–78] to the heterogeneous–firm

models of Khan and Thomas (2003, 2008) and the heterogeneous–household models of Krueger

et al. (2016). We find the Xpa algorithm is an order of magnitude faster for solving these models

than the standard Krusell–Smith (KS) algorithm because it does not need to simulate the dis-

tribution of individual capital and productivity when updating the aggregate forecasting rules.

However, the simulation results in the Xpa and KS algorithms in terms of both the micro– and

macro–level moments are almost identical, even in levels, because of bias correction. The Xpa

algorithm also exhibits accuracy comparable with the KS algorithm.
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1 Introduction

Solving heterogeneous–agent macro models accurately and efficiently is more than ever an important

research agenda. Some recent studies revisit the importance of understanding the effect of micro–

level heterogeneity on aggregate macro dynamics (Ahn et al., 2018; Krueger et al., 2016). For

this reason, as more micro–level panel data consistent with macro aggregates become available,

structural estimations of heterogeneous–agent models using both micro– and macro–level data are

of increasing interest. Accordingly, a faster and accurate computation method for heterogeneous–

agent models is necessary. den Haan and Rendahl (2010) develop the explicit aggregation (Xpa)

algorithm to solve the heterogeneous–household model studied in Krusell and Smith (1998). A

special issue in the Journal of Economic Dynamics and Control (den Haan et al., 2010) considers

different algorithms and shows that the Xpa algorithm can solve the model more efficiently than

the standard Krusell–Smith (KS) algorithm (Maliar et al., 2010).

In this paper, the Xpa algorithm originally proposed by den Haan and Rendahl (2010) is

applied to the heterogeneous–firm models studied in Khan and Thomas (2003, 2008) (hereafter KT)

and to the heterogeneous–household models examined in Krueger et al. (2016) (hereafter KMP).

The latter application is especially interesting as they demonstrate that micro–level heterogeneity

matters for the aggregate macro dynamics when the model is matched with the micro–level wealth

distribution, which is not the case in Krusell and Smith (1998). Indeed, the Xpa algorithm is an

order of magnitude faster than the KS algorithm for solving these models because it does not need

to simulate the distribution of individual capital and productivity when updating the aggregate

forecasting rules. The Xpa algorithm is also easy to implement as we merely evaluate the individual

decision rules as if the amount of individual capital is equal to that of the aggregate capital, e.g.,

k = Kt, especially in the case without idiosyncratic shocks.

We first show how to apply the Xpa algorithm to the KT (2003) model without idiosyncratic

productivity shocks (see also Thomas, 2002). Given Jensen’s inequality, bias correction using

steady–state information is the key to accuracy in terms of forecasting errors such as the den Haan

(2010) statistics. We find the simulation results using the Xpa and KS algorithms are almost
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identical in terms of both the micro– and macro–level moments, even in levels, because of the bias

correction. Further, the Xpa algorithm is nearly equally as accurate as the KS algorithm. We also

present how the Xpa algorithm can apply to the KT (2008) model with idiosyncratic productivity

shocks, where the Xpa algorithm has den Haan errors at most only twice as large as those using

the Krusell–Smith algorithm. We accomplish this developing a novel approach we call ε–indexed

aggregation to deal with the idiosyncratic shocks.1

In terms of related work, Terry (2017) applies different algorithms to solve the KT (2008)

model and asserts that the Xpa algorithm is indeed faster, but less accurate, than other algorithms

employing projection methods. However, that implementation of the Xpa algorithm applies a naive

aggregation.2 Instead, in the present paper, we argue that the ε–indexed aggregation provides much

more accurate solutions by a factor of three or four more than what Terry (2017) reports for the

den Haan errors.

We then show that the Xpa algorithm also works in a KMP (2016) environment in which het-

erogeneity matters. The ε–indexed aggregation is modified so that we can deal with exogenously

time–varying employment (Krusell and Smith, 1998). This is a non–trivial extension as the dimen-

sion of idiosyncratic shocks is made much larger to include not only employment status, but also

earnings risk and discount factor shocks, in KMP’s benchmark model.3 Once again, the simulation

results using the Xpa and KS algorithms are very close and the accuracy in the forecasting errors

only slightly worsens with the Xpa algorithm. In our computation, we solve the benchmark model

in KMP in seconds with the Xpa algorithm using Fortran and OpenMP.

Krusell and Smith (1998) first develop a simulation–based method for solving an incomplete–

market heterogeneous–household model with aggregate uncertainty. A computational difficulty

1The ε–indexed aggregation evaluates the individual decision rules at k = Kt(εi), where Kt(εi) is the total amount
of capital held by individuals that have a common idiosyncratic shocks εi. Given that the measure of households
µt(εi, k) can be decomposed into µkt(k|εi)φ(εi), we can use Kt(εi) =

∫
kµkt(k|εi)dk instead of Kt =

∑
i

∫
kµt(εi, k)

to evaluate the individual decision rules and take a weighted average of the evaluated functions with φ(εi) being the
weight. As we know only the values of Kt as grid points, we approximate Kt(εi) ≈ ψ(εi)Kt where ψ(εi) = Kss(εi)/Kss

by using steady–state information.
2The Xpa algorithm is first adapted and applied to the heterogeneous–firm models by Sunakawa (2012), which

also uses naive aggregation.
3den Haan and Rendahl (2010) include each ε–indexed capital in the indivisual decision rule as a state variable.

This approach is very costly or infeasible as the number of grid points for εi increases because we need more dimensions
of the state space.
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arises from the fact that the state of the economy is the whole distribution of individual capital

and productivity. To address this, they assume that approximate aggregation (Krusell and Smith,

1998; Young, 2005) holds, such that the entire state of the economy is approximated by the mean

of the distribution. They then update the forecasting rules for individual households to infer the

state of the economy by simulating the model for a long time, which is time–consuming.4

In contrast, Reiter (2009) proposes a way to handle the whole distribution without assuming the

aggregate approximation.5 The distribution is approximated by the non–stochastic method with

histogram (Young, 2010). Then, the equilibrium dynamics with aggregate shocks are approximated

at the first order by linearizing the model around the deterministic steady state. The method can

then handle hundreds of state variables because of such linearization.6 Although Reiter’s (2009)

method is also much faster than the standard KS algorithm, as is the Xpa algorithm, the method

is based on first–order perturbation and cannot consider the higher–order effects of aggregate

uncertainty as certainty equivalence holds.7

The reminder of the paper proceeds as follows. Section 2 presents the heterogeneous–firm mod-

els in KT (2003; 2008). Section 3 explains the KS and Xpa algorithms for each of the cases without

and with idiosyncratic shocks. Especially in the latter, we introduce ε–indexed aggregation to

deal with the idiosyncratic shocks. We also show how to adjust the bias in levels from Jensen’s

inequality by following den Haan and Rendahl (2010). Section 4 analyzes the numerical results of

the heterogeneous–firm models with the calibrated parameters in KT (2003; 2008) and Section 5

presents the heterogeneous–household models in KMP (2016) and provides the calibration and nu-

merical results. We find that in both cases of the heterogeneous–firm and heterogeneous–household

models, the Xpa algorithm is much faster and comparably accurate to the KS algorithm. Section

4Alternatively, Algan et al. (2008, 2010) and Winberry (2018) show how to solve the model by parametrizing the
distribution. Gordon (2011) proposes a way to approximate the whole distribution with hundreds of state variables
(i.e., bins in a histogram) with sparse grid.

5Reiter’s (2010b) backward induction method can also be applied to models in which approximate aggregation does
not hold. The method is applied to stochastic overlapping generations models with aggregate uncertainty by Khan
(2017); Kim (2018). Okahata (2018) demonstrates the method can also merge with the continuous–time methods in
Ahn et al. (2018).

6Reiter (2010a); Ahn et al. (2018) further develop a method to reduce the dimension of the state space by projecting
the distribution onto principal components. See also Bayer and Luetticke (2018). Childers (2018) suggests a distinct
approach using linearization.

7Terry (2017) compares Reiter’s method and the standard KS method in solving variants of the KT (2008) model.
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6 concludes. Additional details of the computation are in the Appendix.

2 Khan–Thomas models

In this section, we briefly explain the heterogeneous–firm models in KT (2003; 2008) and refer the

interested readers to the original articles for more detailed discussion. In brief, KT (2008) provides

two extensions to KT (2003), namely, idiosyncratic productivity shocks and constrained investment

without fixed costs, so as to match the micro–level moments of the investment–capital ratio in the

model and the data.

In this economy, there is a continuum of firms. Each firm produces output using the production

function: y = εiztF (k, n), where k is the capital stock, n is the labor input, εi ∈ {ε1, ..., εNε} is the

idiosyncratic firm–specific productivity and zt ∈ {z1, ..., zNz} is the aggregate productivity common

across firms. Each of εi and zt follows a Markov chain. F (k, n) is a common production function

that exhibits decreasing returns to scale. A random fixed cost ξ is incurred on adjusting individual

capital in each period.

A firm is defined by the individual state variables (εi, k, ξ). The aggregate state of the economy

is given by (zt, µt), where µt is the distribution of individual capital and productivity (εi, k) held

by each firm, which is an infinitesimal object.8 Taking as given the shadow price of the household’s

utility pt and the wage rate wt, the firm chooses labor input n and the next period’s capital k′.

The firm’s choice on labor is static. The firm chooses n so as to maximize the current profit

π(εi, k; zt, µt) = max
n
{εiztF (k, n)− wtn}+ (1− δ)k, (1)

where wt = Γw(zt, µt) is the wage rate, which is a function of the aggregate state variables. Note

that the profit includes undepreciated capital (1− δ)k with the depreciation rate of δ ∈ (0, 1] from

the previous period.

The firm’s choice on capital is dynamic and discrete. That is, if the firm pays a fixed cost

(proportional to the wage rate) ξwt, the firm can choose any level of capital in the next period, k′.

8We use µt and µt(εi, k) interchangeably for the distribution, which is also the measure of firms with (εi, k).
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If not, the firm can choose k′ within a limited range of Ω(k).9 The firm’s value by choosing the

next period’s capital k′ is

ṽ0(εi, k, ξ; zt, µt)

= π(εi, k; zt, µt) + max {−ξwt

+ max
k′>0

−γk′ + β
∑
ε′|εi

πε(ε
′|εi)

∑
zt+1|zt

πz(zt+1|zt)
pt+1

pt
ṽ(ε′, k′; zt+1, µt+1)

 ,

max
k′∈Ω(k)

−γk′ + β
∑
ε′|εi

πε(ε
′|εi)

∑
zt+1|zt

πz(zt+1|zt)
pt+1

pt
ṽ(ε′, k′; zt+1, µt+1)


 , (2)

where pt = Γp(zt, µt) is the (shadow) price and µt+1 = Γµ(zt, µt) is the forecasted distribu-

tion in the next period. πε(ε
′|εi) (πz(zt+1|zt)) is the conditional probability of the next period’s

idiosyncratic (aggregate) productivity given the current period’s productivity. ṽ(εi, k; zt, µt) =∫ ξ̄
0 ṽ0(εi, k, ξ; zt, µt)dξ is the ex ante value of the firms that commonly have (εi, k) before they draw

a random fixed cost ξ. Each firm discounts the future by a common stochastic discount factor

βpt+1/pt, whereas β ∈ (0, 1) is the deterministic discount factor. γ is the deterministic trend of the

economy.

We define v(εi, k; zt, µt) ≡ ptṽ(εi, k; zt, µt). By multiplying pt on both sides of (2) and integrating

the equation over ξ, we have a transformed Bellman equation that is recursive in v(εi, k; zt, µt):

v(εi, k; zt, µt) = ptπ(εi, k; zt, µt)

− pt

∫ ξ̂(εi,k;zt,µt)

0
ξG′(ξ)dξwt

+ α(εi, k; zt, µt)E0(εi; zt, µt) + (1− α(εi, k; zt, µt))E1(εi, k; zt, µt), (3)

9If Ω(k) = (1− δ)k is a point set, firms hold the current level of capital after depreciation.
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where

E0(εi; zt, µt) = max
k′>0

−γptk′ + β
∑
ε′|εi

πε(ε
′|εi)

∑
zt+1|zt

πz(zt+1|zt)v(ε′, k′; zt+1, µt+1)

 , (4)

E1(εi, k; zt, µt) = max
k′∈Ω(k)

−γptk′ + β
∑
ε′|εi

πε(ε
′|εi)

∑
zt+1|zt

πz(zt+1|zt)v(ε′, k′; zt+1, µt+1)

 . (5)

If the firm chooses to pay the fixed cost, it selects k∗(εi; zt, µt) regardless of current capital k and

the value of adjustment is E0(εi; zt, µt). If the plant chooses not to pay the fixed cost, the next

period’s capital is kc(εi, k; zt, µt) and the value of non–adjustment is E1(εi, k; zt, µt). ξ̂(εi, k; zt, µt) =

(E0(εi; zt, µt)− E1(εi, k; zt, µt)) / (wtpt) is the threshold level of the fixed cost at or below which

the firm chooses to pay the fixed cost as E0(εi; zt, µt) ≥ E1(εi, k; zt, µt) holds. G is the cumulative

density function of the distribution G : [0, ξ̄]→ [0, 1] and α(εi, k; zt, µt) = G
(
ξ̂(εi, k; zt, µt)

)
is the

probability of adjusting capital.

Given the decision rules for adjusters and non–adjusters, the ex post firm–level decision rule for

capital is

k′ = K(εi, k, ξ; zt, µt) =


k∗(εi; zt, µt), if ξ ≤ min{ξ̄, ξ̂(εi, k; zt, µt)},

kc(εi, k; zt, µt), if ξ > min{ξ̄, ξ̂(εi, k; zt, µt)}.

By convexifying K(εi, k, ξ; zt, µt) over ξ among the firms that commonly have k, we obtain the ex

ante firm–level decision rule for capital:

gk(εi, k; zt, µt) = α(εi, k; zt, µt)k
∗(εi; zt, µt) + (1− α(εi, k; zt, µt))k

c(εi, k; zt, µt). (6)

In addition, the firm–level decision rule for output is given by

gy(εi, k; z, µ) = ztF (εi, k, n
∗(εi, k; zt, µt)), (7)

where n∗(εi, k; zt, µt) is the optimal level of labor input that the firms choose by solving the in-

tratemporal problem (1).
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The individual decision rules are aggregated as

Yt =
∑
i

∫
gy(εi, k; zt, µt)µt(εi, k)dk, (8)

Kt+1 =
∑
i

∫
gk(εi, k; zt, µt)µt(εi, k)dk, (9)

where µt(εi, k) is the measure of firms with (εi, k). We normalize the distribution so that
∑

i

∫
µt(εi, k)dk =

1 holds. Having Yt and Kt+1 at hand, the resource constraint implies

Ct = Yt + (1− δ)Kt −Kt+1

where Ct is the aggregate consumption and Kt =
∑

i

∫
kµt(εi, k)dk is the aggregate capital. The

labor market clears such that

Nt =
∑
i

∫ [
n∗(εi, k, zt, µt) +

∫ ξ̂(εi,k;z,µ)

0
ξG′(ξ)dξ

]
µt(εi, k)dk

holds, where Nt is the aggregate hours worked.

Finally, the prices and wages are functions of the aggregate state of the economy because the

household’s consumption–saving and working decisions have effects on the prices and wages in a

general equilibrium. Let U(Ct, 1 − Nt) = logCt + η(1 − Nt) be the household’s utility function

period by period. Then the prices and wages are given by pt = D1U(Ct, 1 − Nt) = 1/Ct and

wt = D2U(Ct, 1−Nt)/D1U(Ct, 1−Nt) = η/pt as a result of the household’s optimization.

A recursive competitive equilibrium is defined so as to satisfy (i) the household’s optimality,

(ii) each firm’s optimality, (iii) feasibility (i.e., markets clearing), and (iv) consistency between the

individual decision rules and the aggregate forecasting rules.

Regarding the feasibility stated in the definition above, the individual decision rules gy(εi, k; zt, µt)

and gk(εi, k; zt, µt) are implicit functions of the prices pt and wages wt = η/pt. For a conjectured

price p̃t, (4) and (5) are solved for the individual decision rules. Then (8) and (9) yield the aggregate

variables Yt, Kt+1, and the updated price pt = C−1
t . There is a mapping denoted by pt = F (p̃t)

9



from the conjectured price to the updated price. To obtain the market–clearing price, a fixed point

problem p∗t = F (p∗t ) is solved.10

Regarding consistency, each of the Xpa or KS algorithms achieves this in a different manner,

as shown in the following section.

3 Two algorithms

In this section, we explain the two algorithms used in this study, namely, the Xpa algorithm

developed by den Haan and Rendahl (2010) and the standard KS algorithm. The individual

decision rules are consistent with the forecasting rules for the aggregate state of the economy. The

Xpa and KS algorithms achieve consistency in a different manner. The only difference in these

algorithms is their way of aggregating the individual decision rules to obtain the forecasting rules.

For the most part, the Xpa algorithm is easier to implement as it does not require simulations, but

it is not straight–forward to apply the method to models with idiosyncratic shocks. For this reason,

we present a novel approach we call ε–indexed aggregation to deal with idiosyncratic shocks.

3.1 Without idiosyncratic shocks

We first consider the case without idiosyncratic shocks as in KT (2003). We remove idiosyncratic

shocks εi and constrain investment by setting Ω(k) = (1−δ)k (i.e., no adjustment is allowed without

paying the fixed cost) in the model presented in the previous section. We also assume that the

approximate aggregation of Krusell and Smith (1998) and Young (2005) holds. That is, the mean

of the distribution at the beginning of period t, Kt =
∫
kµt(k)dk, is sufficient for individuals to

forecast the state of the economy. Therefore, Kt enters into the individual decision rules instead

of µt. Taking the individual decision rules with the aggregate approximation y = gy(k; zt,Kt) and

k′ = gk(k; zt,Kt) as given, we obtain the aggregate output and the next period’s aggregate capital

10Ct and Nt are unpredetermined variables. Therefore, the market–clearing prices are solved to ensure the feasi-
bility. This is also the case in Chang and Kim (2007, 2014); Takahashi (2014); Jang et al. (2018). In contrast, the
prices and wages are functions of only predetermined variables in Krusell and Smith (1998).
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by

Yt =

∫
gy(k; zt,Kt)µt(k)dk, (10)

Kt+1 =

∫
gk(k; zt,Kt)µt(k)dk. (11)

We also obtain Ct = Yt + (1− δ)Kt −Kt+1 and pt = C−1
t . As discussed earlier, we impose market

clearing.

In the KS algorithm, we simulate the model for a long time to obtain the sequence of {zt,Kt, pt}Tt=1

taking the sequence of exogenous aggregate productivity shock {zt} and the initial value of K1 as

given. Using the sequence obtained, we construct a subset of the sequence sorted by the realization

of zt for each zi ∈ {z1, ..., znz} and estimate the forecasting rule by ordinary least squares in the

form of

logKt+1 = bK,0(zi) + bK,1(zi) logKt,

log pt = bp,0(zi) + bp,1(zi) logKt,

for each i = 1, ..., nz. We denote them by Kt+1 = ΓKS
K (Kt, zt) and pt = ΓKS

p (Kt, zt).

In the Xpa algorithm, instead of simulating the model, we just move the integral over k into

the individual decision rule

Kt+1 =

∫
gk(k; zt,Kt)µt(k)dk,

≈ gk(

∫
kµt(k)dk; zt,Kt),

= gk(Kt; zt,Kt).

Note that when we solve for the individual decision rule, Kt is given as a grid point instead of the

integral of the distribution. We immediately obtain the forecasting rule for aggregate capital in

the Xpa algorithm Kt+1 = ΓXpa(Kt, zt) ≡ g(Kt; zt,Kt) by evaluating the individual decision rule

gk(k; zt,Kt) at k = Kt. We also obtain Yt = gy(Kt; zt,Kt), which implies the forecasting rule for
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the shadow price of the household’s utility by Ct = Yt + (1− δ)Kt−Kt+1 and pt = C−1
t . We again

consider market clearing.

Bias correction Because of Jensen’s inequality, the Xpa algorithm yields biases in Yt and Kt+1.

The individual decision rules gy(k; zt,Kt) and gk(k; zt,Kt) must be linear at k = Kt for the Xpa

algorithm to have the same aggregate variables as in (10) and (11) obtained in the KS algorithm.

den Haan and Rendahl (2010) suggested a way to correct these biases in Yt and Kt+1. Let Kss =∫
ḡk(k)µ̄(k)dk be the level of aggregate capital, which is obtained by the steady–state individual

decision rule ḡk(k) and the stationary distribution µ̄(k). Also let K̃ss = ḡk(
∫
kµ̄(k)dk) = ḡk(Kss)

be the decision rule ḡk(k) evaluated at k = Kss. Then a time–invariant number for bias correction

is given by ζk ≡ Kss − K̃ss = Kss − ḡk(Kss) , which measures Jensen’s inequality in the steady

state. We do the same for output and obtain ζy ≡ Yss − Ỹss = Yss − ḡy(Kss). We then add the

bias–correction terms to the forecasting rules in the Xpa algorithm, that is,

Kt+1 = gk(Kt; zt,Kt) + ζk,

Yt = gy(Kt; zt,Kt) + ζy.

Figure 1 illustrates the shape of the individual decision rule gk(k; zt,Kt) evaluated at k = Kt.

The figure is a typical example of (S, s)–type capital adjustment. That is, only when the current

level of individual capital is sufficiently far from the target level will the firm choose to adjust capital;

otherwise, the firm will continue holding the current level of capital (after capital depreciation).

Even after convexifying the ex post firm–level decision rule over random fixed costs, the ex ante

firm–level decision rule exhibits considerable nonlinearity. This is quite different from the individual

decision rules in the household consumption–saving problem in Krusell and Smith (1998), which

are almost linear save points near the origin where poor households face borrowing constraints.

Even though the individual decision rule gk(k; zt,Kt) is nonlinear in k, when it is evaluated at

k = Kt, the resulting function gk(Kt; zt,Kt) is linear in Kt.
11 The red line in the figure depicts

11This result may suggest that the Xpa algorithm works when the forecasting rule obtained by the KS algorithm
exhibits small nonlinearity, e.g., a high R–squared.
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this relationship. Given Jensen’s inequality, there is a downward bias in gk(Kt; zt,Kt) compared

with ΓK(zt,Kt). Note that gk(k; zt,Kt) is convex in k taking (zt,Kt) as fixed. We can correct

for this bias using the steady–state counterparts, ḡk(k). After bias correction, we can see that the

intersection of ΓK(zt,Kt) and the 45–degree line (in black) corresponds to the deterministic steady

state of Kss (the vertical gray line).12

12Terry (2017) uses a different method for correcting biases. The intercepts in the forecasting rules, logKt+1 =

bK,0(zi) + bK,1(zi) logKt, are adjusted so that the steady state implied by the forecasting rules exp
(

bK,0(zi)

1−bK,1(zi)

)
coincides with the deterministic steady state Kss for each level of zi. In the proposed method, we undertake such a
correction using the individual decision rules in the steady state.
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Figure 1: Individual decision rules and forecasting rules.
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3.2 With idiosyncratic shocks

When we allow for idiosyncratic shocks, aggregate capital in the next period (we omit aggregate

output, but the same discussion applies) is given by

Kt+1 =
∑
i

∫
gk(εi, k; zt,Kt)µt(εi, k)dk,

The measure of (εi, k) can be decomposed into

µt(εi, k) = µkt(k|εi)φ(εi),

where φ(εi) =
∫
µt(εi, k)dk is the marginal distribution of εi assumed to be a time–invariant measure

of εi and µkt(k|εi) = µt(εi,k)∫
µt(εi,k)dk

is the conditional distribution of µt(εi, k).13 Then, the aggregation

in the Xpa algorithm becomes

Kt+1 =
∑
i

∫
gk(εi, k; zt,Kt)µkt(k|εi)φ(εi)dk,

≈
∑
i

gk(εi,

∫
kµkt(k|εi)dk; zt,Kt)φ(εi),

=
∑
i

gk(εi,Kt(εi); zt,Kt)φ(εi),

where Kt(εi) ≡
∫
kµkt(k|εi)dk is the amount of capital indexed by εi at the beginning of period t.

Note that Kt =
∑

i

∫
kµt(k, εi)dk =

∑
iKt(εi)φ(εi) holds.

ε–indexed aggregation We wish to use Kt(εi) to evaluate the individual decision rule. However,

we know the value of Kt only as a grid point. Therefore, we apply so–called ε–indexed aggregation as

follows. Kt(εi) is not on grid points and we evaluate the individual decision rule at Kt(εi) = ψ(εi)Kt

where

ψ(εi) =
Kss(εi)

Kss
=

Kss(εi)∑
iKss(εi)φ(εi)

,

13Note that its integral over k is normalized to one, i.e.,
∫
µkt(k|εi)dk =

∫
µt(εi,k)dk∫
µt(εi,k)dk

= 1.
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Kss(εi) =
∫
kµ̄k(k|εi)dk, and Kss =

∑
i

∫
kµ̄(εi, k)dk =

∑
iKss(εi)φ(εi) (µ̄(εi, k) is the stationary

distribution of (k, εi)).
14

Bias correction When we allow for idiosyncratic shocks, we perform bias correction for each

level of idiosyncratic shocks. Let Kss(εi) =
∫
ḡk(εi, k)µ̄k(k|εi)dk be the amount of εi–indexed

capital in the steady state, which is obtained by the decision rule ḡk(εi, k) and the stationary

distribution µ̄(εi, k). Also let K̃ss(εi) = ḡk(εi,
∫
kµ̄k(k|εi)dk) = ḡk(εi,Kss(εi)) as the decision rule

evaluated at Kss(εi). Then the bias–correction term depends on each εi, ζk(εi) ≡ Kss(εi)−K̃ss(εi) =

Kss(εi)− ḡk(εi,Kss(εi)), and we have

Kt+1 =
∑
i

[gk(εi,Kt(εi); zt,Kt) + ζk(εi)]φ(εi).

Discussion Terry (2017) and Sunakawa (2012) undertake a naive explicit aggregation. That

is, they evaluate the policy function gk(εi, k; zt,Kt) at k = Kt instead of k = Kt(εi). However,

this aggregation may lead to large forecasting errors, as shown in Terry (2017). den Haan and

Rendahl (2010) assume that the individual decision rule is a function of each ε–indexed capital.

For example, in the standard Krusell and Smith (1998) model, the idiosyncratic shock takes two

values, εi ∈ {u, e}, and the policy function becomes g(εi, k; zt,Kt(u),Kt(e)). We evaluate this at

k = Kt(εi) for each εi as we know the value of ε–indexed capital as a grid point. This approach

is very costly or infeasible as the number of grid points for εi increases because we need more

dimensions of the state space.

We use steady–state information for both the bias correction and the ε–indexed aggregation.

Therefore, an accurate steady–state solution is necessary. We find that non–stochastic methods

(Young, 2010) augmented with the use of eigenvalue and eigenvector decomposition often yield a

precise approximation to the stationary distribution. See Appendix A.1 for details. In contrast,

stochastic methods may give a poor approximation to the stationary equilibrium that also worsens

14The assumption that ψ(εi) = Kt(εi)/Kt is time–invariant may not be valid with large aggregate shocks when the
share of each ε–indexed capital significantly changes over time. Later we relax this assumption with an exogenously
time–varying employment measure in Section 5.
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the precision of the Xpa algorithm.15

4 Numerical examples

In this section, we present the numerical results from applying the KS and Xpa algorithms to

the heterogeneous–firm models in KT (2003; 2008). We examine both cases without idiosyncratic

shocks (KT 2003, aka the traditional model) and with idiosyncratic shocks (KT 2008, aka the

extended model), although we mainly focus on the latter in the main text.

4.1 Parameterization

The parameter values used in this paper closely follow those in KT (2003; 2008). The functional

forms are U(C, 1 −N) = logC − ηN and F (k, n) = kαnν , where η > 0, α ∈ (0, 1), ν ∈ (0, 1), and

α+ ν < 1. The distribution of the random fixed costs drawn by firms is uniform G : [0, ξ̄]→ [0, 1].

The Markov chain for aggregate– and firm–level productivity approximates an AR(1) process by

Tauchen’s (1986) method; z′ = ρzz + η′z and ε′ = ρεε + η′ε for each, where η′z ∼ N(0, σzη) and

η′ε ∼ N(0, σεη). The range of constrained investment is given by Ω(k) =
[

1−δ+a
γ k, 1−δ+b

γ k
]
, where

−a = b > 0.

The parameter values and targeted moments are in Tables 1 and 2, respectively. The unit of

time is a year. The mean growth rate of technology γ implies a 1.6 percent average annual growth

rate. The discount factor β is from an average annual real interest rate βγ−1− 1 of 4 percent. The

annual depreciation rate is 6.9 percent to match the average investment–capital ratio in the fixed

asset tables. Labor’s share ν is 0.64 as in Prescott (1986).

We internally calibrate the other parameters in the model. The capital share α is set to match a

capital–output ratio of 2.353. η is a normalization parameter and set so that the steady state labor

is 1/3. The values of (ξ̄, b, σξη) are chosen to match the data of the average firm–level investment

rates in Cooper and Haltiwanger (2006) as shown in Table 2. Our steady–state results show that

we match these internal calibration targets quite well. In the traditional model of KT (2003), firm–

15Rios-Rull (1999) mentions that non–stochastic methods provide a better approximation of the steady state than
stochastic methods.
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level productivity is constant and there is no constrained investment, i.e., b = σξη = 0. ξ̄ = 0.014

is set to match the average investment rate of positive spikes (i/k > 0.20). In the extended model

of KT (2008), the other moments are reasonably matched between the model and the data. Note

that we set ρε = ρz as there is little agreement about the persistence of the firm–level idiosyncratic

productivity.

Table 1: Parameters.

a. Externally calibrated

β γ δ ν ρz σzη ρε

Traditional 0.977 1.016 0.069 0.640 0.859 0.014 —

Extended 0.977 1.016 0.069 0.640 0.859 0.014 0.859

b. Internally calibrated

α η ξ̄ b σεη

Traditional 0.256 2.400 0.014 0.0 —

Extended 0.256 2.400 0.0083 0.011 0.022

Notes: The values of (ξ, b, σεη) are chosen by following KT (2008).

Table 2: Targeted moments.

a. Aggregate variables (without aggregate uncertainty)

K/Y N

Traditional 2.3487 0.3337

Extended 2.3515 0.3338

b. Firm–level investment rates (without aggregate uncertainty)

Mean Std.dev. Inaction Spike+ Spike- Invest+ Invest-

Traditional 0.1046 0.0214 0.2113 0.1284 0.0000 0.7887 0.0000

Extended 0.1158 0.0716 0.0097 0.1595 0.0130 0.8127 0.1779

Census data 0.122 — 0.081 0.186 0.018 0.815 0.104

Notes: Census data are from Cooper and Haltiwanger (2006). Inaction: |i/k| < 0.01, Spike+:
i/k ≥ 0.2, Spike-: i/k ≤ −0.2, Invest+: i/k ≥ 0.01, and Invest-: i/k ≤ −0.01.
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4.2 Model statistics

To start, we detail the unconditional business cycle statistics in Table 3. We simulate the model

for 2,500 periods and discard the first 500 periods. We take logs of the simulated data and use

the Hodrick–Prescott filter to remove the low frequency components. We can then see that after

being detrended, the outcomes of the two algorithms are very similar. This is also true for the

higher–order moments, including skewness and excess kurtosis, of the aggregate investment–capital

ratio, although estimates of these higher–order moments are usually unstable.

As we can see from the plot of the simulated time series of the aggregate variables in Figure

2, not only the second– and higher–order moments, but also the levels are very close to each

other for the two algorithms. This is through the bias–correction procedure explained in Section

3. Compared with previous studies that apply the Xpa algorithm (Terry, 2017; Sunakawa, 2012),

the ε–indexed aggregation with bias correction yields almost indistinguishable results in both levels

and higher–order moments from those with the KS algorithm.

We also consider the conditional moments by computing the impulse responses to a positive

shock to the aggregate productivity. We simulate the economy with no shocks for a long period

so that the economy reaches the stochastic steady state (Coeurdacier et al., 2011). Then we hit

the economy with a one–time persistent positive productivity shock. As depicted in Figure 3, we

can see that the outcomes of the two algorithms are again quite similar, although the responses of

aggregate capital as computed by the Xpa algorithm are slightly weaker.
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Table 3: Business cycle statistics, extended model.

Y C I N K Z

Standard deviation
KS (2.5329) 0.4344 3.6109 0.6652 0.5138 0.5972
Xpa (2.5100) 0.4401 3.5767 0.6564 0.5097 0.6027

Output correlation
KS 1.0000 0.8732 0.9731 0.9364 0.0459 0.9996
Xpa 1.0000 0.8802 0.9734 0.9360 0.0449 0.9995

Persist. Std.dev. Skewness Exc.kur.

Agg. investment rate, I/K
KS 0.6499 0.0107 0.0714 -0.0943
Xpa 0.6525 0.0105 0.0575 -0.0915

Notes: We take logs of the simulated data and use the Hodrick–Prescott filter (with a filtering
parameter λ = 100) to remove the low–frequency components.

Figure 2: Unconditional business cycle simulation, extended model.
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Figure 3: Impulse responses, extended model.
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Table 4: Level differences between KS and Xpa, extended model.

a. Aggregate variables

K/Y N p = C−1

KS 2.3506 0.3338 2.3666

Xpa 2.3538 0.3339 2.3656

SS 2.3515 0.3338 2.3663

b. Firm–level investment rates

Mean Std.dev. Inaction Spike+ Spike- Invest+ Invest-

KS 0.1158 0.0717 0.0098 0.1595 0.0130 0.8126 0.1779

Xpa 0.1158 0.0717 0.0097 0.1591 0.0130 0.8126 0.1779

SS 0.1158 0.0716 0.0097 0.1595 0.0130 0.8127 0.1779

Notes: Inaction: |i/k| < 0.01, Spike+: i/k ≥ 0.2, Spike-: i/k ≤ −0.2, Invest+: i/k ≥ 0.01, and
Invest-: i/k ≤ −0.01.

Table 4 displays the aggregate and disaggregate variables in levels at the stochastic steady state.

Interestingly, the levels of the capital–output ratio and the hours worked are almost the same as
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in the deterministic steady state. This is also true when we look at the distribution of firm–level

investment rates. This means that the higher–order effects of aggregate uncertainty on the levels of

aggregate and disaggregate variables are very limited, as opposed to the heterogeneous–household

models of Krusell and Smith (1998) in which households are risk averse.

In the traditional KT model (2003), we also observe a strong similarity in the unconditional

and conditional moments between the outcomes of the Xpa and KS algorithms. The corresponding

tables and figures are in Appendix A.3.

4.3 Accuracy and efficiency

To evaluate accuracy in terms of forecasting errors, we employ not only the R–squared and the root

mean squared errors (RMSE), but also the den Haan (DH) statistics based on the forecasting rules

ΓK(Kt, zt) and Γp(Kt, zt) as in den Haan (2010). We calculate both the static and dynamic forecast

errors as in Terry (2017). To calculate the dynamic forecast errors, taking as given the sequence

of exogenous shock {zt}Tt=1 and the initial value of K1, we use the forecasting rules recursively to

generate the sequence of the next period’s aggregate capital and the shadow price, {K̃t+1, p̃t}Tt=1.

The sequence is compared with the simulated data from the model, {Kt+1, pt}. Then we have

uK,t =
∣∣∣K̃t+1 −Kt+1

∣∣∣ ,
up,t = |p̃t − pt| ,

for t = 1, ..., T . The static forecast errors are one–step ahead forecast errors, i.e., eK,t = |ΓK(Kt, zt)−Kt+1|

and ep,t = |Γp(Kt, zt)− pt|. We sort the forecast errors by the realization of zt for each zi.
16 The

dynamic forecast errors are more robust measures of accuracy as errors accumulate over time, and

we report the max and mean DH errors based on the dynamic forecast errors.

Figure 4 is the so–called den Haan fundamental plot for aggregate capital and consumption

(the inverse of the shadow price). We compare the simulated data with the dynamic and static

16Using the static forecast errors sorted for each zi with Ti samples, we also have RMSEs as
√∑Ti

t=1 e
2
K,t

and
√∑Ti

t=1 e
2
p,t and R–squares as 1 −

∑Ti
t=1 e

2
K,t/

∑Ti
t=1(Kt+1 − K̄)2 and 1 −

∑Ti
t=1 e

2
p,t/

∑Ti
t=1(pt − p̄)2 where

K̄ = (1/Ti)
∑Ti
t=1Kt+1 and p̄ = (1/Ti)

∑Ti
t=1 pt.
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forecasts. We can see that the differences between the simulated data and the dynamic or static

forecasts (i.e., uKt and upt or eKt and ept) are very small throughout. Specifically, by using the

extended model, we report in Table 5 that the maximum values of the DH statistics in the Xpa

algorithm are at most twice those in the KS algorithm (0.792 vs. 0.337 for uKt and 0.263 vs. 0.119

for upt). Indeed, they are much smaller (by a factor of three or four times) than what Terry (2017)

reports for the max DH statistics (3.457 for uKt and 1.210 for upt). In the traditional model, the

difference is even smaller as the Xpa algorithm is almost equally as accurate as the KS algorithm.

Figure 4: den Haan fundamental plots, extended model.
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Table 5: DH statistics, RMSE, and R–squared.

a. Extended model

DHmax, % DHmean, % RMSE, % R–squared

K ′ p K ′ p K ′ p K ′ p
KS z1 0.3095 0.1174 0.0055 0.0021 0.0256 0.0064 0.9999 1.0000

z2 0.3386 0.1189 0.0166 0.0063 0.0274 0.0060 0.9999 1.0000
z3 0.2605 0.1122 0.0178 0.0063 0.0270 0.0056 0.9999 1.0000
z4 0.3064 0.1062 0.0149 0.0052 0.0256 0.0064 0.9999 1.0000
z5 0.2297 0.0743 0.0040 0.0016 0.0184 0.0056 0.9999 1.0000

Xpa z1 0.7921 0.1858 0.0404 0.0055 0.1660 0.1574 0.9966 0.9873
z2 0.6629 0.2535 0.0831 0.0197 0.0820 0.0701 0.9993 0.9978
z3 0.5470 0.2631 0.0558 0.0228 0.0379 0.0243 0.9999 0.9997
z4 0.3941 0.2341 0.0165 0.0145 0.0196 0.0312 1.0000 0.9995
z5 0.2227 0.1892 0.0032 0.0057 0.0243 0.0600 0.9999 0.9973

b. Traditional model

DHmax, % DHmean, % RMSE, % R–squared

K ′ p K ′ p K ′ p K ′ p
KS z1 0.3255 0.1490 0.0055 0.0023 0.0293 0.0189 0.9999 0.9998

z2 0.3675 0.1528 0.0181 0.0075 0.0314 0.0184 0.9999 0.9999
z3 0.2945 0.1407 0.0197 0.0080 0.0307 0.0170 0.9999 0.9999
z4 0.3389 0.1271 0.0159 0.0062 0.0276 0.0160 0.9999 0.9999
z5 0.2371 0.0866 0.0042 0.0019 0.0195 0.0134 0.9999 0.9999

Xpa z1 0.4755 0.1374 0.0256 0.0046 0.0941 0.0708 0.9989 0.9975
z2 0.4457 0.1624 0.0628 0.0158 0.0620 0.0364 0.9996 0.9994
z3 0.4125 0.1769 0.0559 0.0214 0.0366 0.0171 0.9999 0.9999
z4 0.3425 0.1779 0.0277 0.0172 0.0216 0.0268 0.9999 0.9997
z5 0.2747 0.1706 0.0072 0.0063 0.0149 0.0405 1.0000 0.9988

Notes: Taking the dynamic and static forecast errors (sorted for each zi) {uy,t}Tit=1 and {ey,t}Tit=1 for

y ∈ {K, p} as given, DHmax is the maximum value of {uy,t}Tit=1, DHmean is the average of {uy,t}Tit=1,

RMSE is
√∑Ti

t=1 e
2
y,t, and R–squared is 1−

∑Ti
t=1 e

2
y,t/

∑Ti
t=1(yt − ȳ)2 where ȳ = (1/T )

∑Ti
t=1 yt.

Finally, in Table 6, we compare the two algorithms in terms of computation time. The pro-

gramming code is written in Fortran with OpenMP directives so that all the cores on a computer

are utilized. We find the Xpa algorithm is about 20–100 times faster than the KS algorithm. This

result is comparable with that obtained by den Haan and Rendahl (2010) for the Krusell and Smith

(1998) model. Specifically, the speed gain is mainly in the outer loop to obtain the forecasting rules,
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as we do not need to simulate the model to update the forecasting rules in the Xpa algorithm. Note

that the two algorithms share the same subroutines for calculating the steady state, inner loops,

and unconditional/conditional simulations.

Table 6: Computational time.

Inner Outer # of loop Total

Extended
KS 0.750 122.607 10.000 1233.570
Xpa 0.745 0.032 11.000 8.547
Xpa/KS 0.993 <0.001 1.100 0.007

Traditional
KS 0.386 6.532 6.000 41.505
Xpa 0.386 0.007 6.000 2.355
Xpa/KS 1.000 0.001 1.000 0.057

Notes: Computation using a workstation with Xeon E5–2696v4 (2.2 Ghz, 44 cores).

5 Krueger–Mitman–Perri models

Krueger, Mitman and Perri (2016; hereafter KMP) extend the analysis in Krusell and Smith (1998)

and show that micro–level heterogeneity matters for the aggregate dynamics.17 In this section, we

show that the Xpa algorithm can be applied to the models in KMP.

5.1 Model

In the economy, there are the representative firm, heterogeneous households, and the government.

The continuum of households differs in their asset holdings, denoted as k, and the other idiosyncratic

shocks, represented by a vector xi ≡ (ei, yi, βi), which include the following.

• Employment status ei: ei ∈ {1, ρ}, where ρ is the replacement ratio. That is, households have

unemployment insurance.

17We use the model in a working paper version of Krueger et al. (2015). There are three major differences from
Krueger et al. (2016): (i) earnings risk is an AR(1) process instead of a joint process combining persistent and
transitory components, (ii) there is no retirement and social insurance, which influences (iii) the calibration of β.
Nonetheless, introducing retirement and social insurance and/or a more complicated stochastic process for earnings
risk is relatively straight–forward.
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• Labor productivity yi: Households face idiosyncratic earnings risk,

log y′ = φ log y + η′,

where η′ ∼ N(0, σ2
η). We transform the continuous variables in the AR(1) process into the

discretized grid points of a Markov chain. That is, yi ∈ {y1, ..., yNy}.

• Discount factor βi: Households are born with βi ∈ [β̄ − ε, β̄ + ε] and live with β their entire

life. They die with probability (1 − θ) ∈ [0, 1]. A fraction θ of households is born in every

period with no assets.

A household is defined by the individual state variables (xi, k). The aggregate state of the economy

is given by (zt, µt), where zt is aggregate productivity and µt is the distribution of individual assets

and the other characteristics held by each household. Taking as given the wage rate wt and the

real interest rate rt, the household (xi, k) chooses consumption c and the next period’s capital k′.

The household’s life–time utility from choosing (c, k′) is

v(xi, k; zt, µt) = max
c,k′≥0

{u(c)

+ θβi
∑
zt+1

∑
e′

∑
y′

πz(zt+1|zt)πe(e′|ei, zt+1, zt)πy(y
′|yi)

×v(e′, y′, βi, k
′; zt+1, µt+1)

}
, (12)

subject to the budget constraint and forecasting rule for the aggregate state in the next period

c+ k′ = (1− τ(zt; ρ))wtyiei + (1 + rt − δ)k/θ,

µt+1 = Γ(zt, µt),

where each of πz(zt+1|zt), πe(e′|ei, zt+1, zt), and πy(y
′|yi) is the conditional probability of the next

period’s aggregate or idiosyncratic state given the current period’s state. τ(zt; ρ) is a flat income tax

with which the government finances unemployment insurance. By solving the household’s problem,
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we have the individual decision rule for saving

k′ = g(xi, k; zt, µt), (13)

which is aggregated as

Kt+1 =
∑
i

∫
g(xi, k; zt, µt)θµt(xi, k)dk,

where µt(xi, k) is the measure of households with the amount of individual asset k and other

peculiarities xi and θ is the survival probability from period t to period t + 1. Note that the

replacing newborns have no assets.

The representative firm has access to a Cobb–Douglas production technology Yt = ztK
α
t L

1−α
t

and maximizes profit Yt− (r+ δ)Kt−wtLt in each period. The first–order necessary conditions are

wt = (1− α)ztK
α
t L
−α
t ,

rt = αztK
α−1
t L1−α

t − δ,

where Kt =
∑

i

∫
kµt(xi, k)dk is the aggregate capital and Lt =

∑
i

∫
I(ei = 1)µt(k, xi)dk is the

amount of aggregate hours worked.

A recursive competitive equilibrium is defined so as to satisfy (i) each household’s optimality,

(ii) the firm’s optimality, (iii) feasibility: Ct = Yt + (1− δ)Kt−Kt+1, and (iv) consistency between

the individual decision rules and the aggregate forecasting rules.

ε–indexed aggregation with time–variant employment measure We assume that approx-

imate aggregation holds. That is, v(xi, k; zt, µt) and g(xi, k; zt, µt) are replaced by v(xi, k; zt,Kt)

and g(xi, k; zt,Kt) and the aggregate forecasting rule is given by Kt+1 = Γ(zt,Kt). The aggregate

capital in the next period is given by

Kt+1 =
∑
i

∫
g(xi, k; zt,Kt)θµt(xi, k)dk,
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The measure of (xi, k) can be decomposed into

µt(xi, k) = µkt(k|xi)φ(xi; zt),

where φ(xi; zt) =
∫
µt(xi, k)dk is the marginal distribution of xi that is assumed to be a time–

variant measure of xi depending on zt.
18 This implies exogenously time–varying hours worked

Lt =
∑
i

∫
I(ei = 1)µt(k, xi)dk

=
∑
i

I(ei = 1)φ(xi; zt)

= 1− u(zt)

With the time–varying employment measure φ(xi; zt), the aggregation in the Xpa algorithm

becomes

Kt+1 =
∑
i

∫
g(xi, k; zt,Kt)θµkt(k|xi)φ(xi; zt)dk,

≈
∑
i

g(xi,

∫
kµkt(k|xi)dk; zt,Kt)θφ(xi; zt),

=
∑
i

g(xi,Kt(xi; zt); zt,Kt)θφ(xi; zt),

where Kt(xi; zt) ≡
∫
kµkt(k|xi)dk is the amount of capital indexed by xi at the beginning of period

t. As before, Kt(xi; zt) is not on the grid points and we evaluate the individual decision rule at

Kt(xi; zt) = ψ(xi; zt)Kt where ψ(xi; zt) = Kss(xi; zt)/Kss and Kss(xi; zt) =
∫
kµ̄k(k|xi; zt)dk.

We also calculate the bias–correction terms

ζ(xi) = Kss(xi)− ḡ(Kss(xi)),

where Kss(xi) =
∫
ḡk(εi, k)µ̄k(k|xi)dk. Note that the bias–correction terms do not depend on zt.

19

18µkt(k|xi) = µt(xi,k)∫
µt(xi,k)dk

is the conditional distribution of µt(xi, k), which is also time–variant.
19There are two different decompositions of the stationary distribution here. One is µ̄(xi, k) = µ̄k(k|xi)φ(xi) and
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Then we have

Kt+1 =
∑
i

[g(xi,Kt(xi; zt); zt,Kt)θ + ζ(xi)]φ(xi; zt).

5.2 Parameterization

We calibrate the model to quarterly US data, where the capital share is α = 0.36 and the de-

preciation rate is δ = 0.025. A two–state Markov process is used for aggregate productivity with

transition matrix

πz(z
′|z) =

 ρl 1− ρl

1− ρh ρh

 .

We have two calibration targets to determine the persistence parameters (pl, ph): the average

length of a severe recession ELl = 1/(1 − ρl) and the fraction of time in a severe recession Πl =

(1−ρh)/(2−ρl−ρh). With ELl = 22 quarters and Πl = 16.48% obtained from the sample periods,

we have (ρl, ρh) = (0.9545, 0.9910).20

To identify the levels of aggregate technology at each state, we also target Yl/Yh = 0.9298,

corresponding to a fall in GDP per capita during the great recession of about 7%. We also have

the average unemployment rates u(zl) = 8.39% and u(zh) = 5.33% from the sample periods.

Then we have zl/zh = (Yl/Ll)/(Yh/Lh) = 0.9608 assuming Ll/Lh = Kl/Kh. A normalization

Πlzl + (1 − Πl)zh = 1 provides (zl, zh) = (0.9676, 1.0064). For the employment status, Krueger

et al. (2016) use the job finding and separation rates from CPS and obtain transition matrices

the other is µ̄(xi, k) = µ̄k(k|xi; zt)φ(xi; zt).
20Krueger et al. (2016) define a recession to be one where the unemployment rate rises above 9% for one quarter

and continues to be above 7%. During 1948.I–2014.III, two recession periods, 1980.II–1986.II and 2009.I–2013.III are
duly identified.
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depending on the current and next period’s aggregate technology z, z′ ∈ {zl, zh}:

πe(e
′|e, zl, zl) =

 0.3378 0.6622

0.0606 0.9394

 , πe(e
′|e, zh, zh) =

 0.1890 0.8110

0.0457 0.9543

 ,

πe(e
′|e, zh, zl) =

 0.3382 0.6618

0.0696 0.9304

 , πe(e
′|e, zl, zh) =

 0.2220 0.7780

0.0378 0.9622

 .

Note that these matrices are consistent with the time–varying unemployment rates u(zl) and

u(zh).21 For the labor productivity, Krueger et al. (2016) estimate (φ̂, σ̂2
y) from the annual PSID

data and translate them for the quarterly model, (φ, σ2
y) = (0.9457, 0.0359). Rouwenhorst’s (1995)

method instead of Tauchen (1986) is used for discretization because of the long persistence φ. The

set of discount factors B = [β̄−ε, β̄+ε] is divided into grid points where (β̄, ε) = (0.98349, 0.01004).

θ = 0.99375 so that the probability of death is 1/160. For the replacement ratio, ρ = 0.5 is used

for the benchmark case. Note that τ(zt; ρ) = u(zt)ρ
1−u(zt)+u(zt)ρ

holds from the government’s balanced

budget. The parameter descriptions and values are summarized in Table 7.

21The stationary distribution of employment status implied by πe(e
′|e, zl, zl) (πe(e

′|e, zh, zh)) coincides with the
employment rate 1− u(zl) (1− u(zh)).
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Table 7: Parameters.

Parameters

Capital share α 0.36
Depreciation rate δ 0.025
Risk aversion σ 1.0
Agg. productivity (zl, zh) (0.9676, 1.0064)
Unemployment rate (ul, uh) (0.0839, 0.0533)

Transition for agg. prod. πz(z
′|z)

(
0.9545 0.0455
0.0090 0.9910

)
Replacement ratio ρ 0.50

Transition for emp. status πe(e
′|e, zh, zh)

(
0.1890 0.8110
0.0457 0.9543

)
πe(e

′|e, zh, zl)
(

0.3382 0.6618
0.0696 0.9304

)
πe(e

′|e, zl, zh)

(
0.2220 0.7780
0.0378 0.9622

)
πe(e

′|e, zl, zl)
(

0.3378 0.6622
0.0606 0.9394

)
Persistence of idio. prod. φ 0.9457
Std. dev. of idio. prod. σ2

y 0.0359

Discount factor β̄ 0.98349
Discount factor shock ε 0.01004
Survival rate θ 0.99375

Source: Krueger, Mitman, and Perri (2015, working paper).

In Table 8, we replicate the stationary distribution results in KMP. We consider three calibra-

tions. The baseline calibration is denoted by KMP. In the KS calibration, we omit the earnings

risk and discount factor heterogeneity. We also set θ = 1 and ρ = 0.01. That is, we have no

stochastic death and unemployment insurance (we need a positive ρ > 0 so that the amount of

consumption is positive). We add the earnings risk only to the KS calibration, denoted +σ(y). The

KMP calibration shows that there are many households that have no net wealth. In contrast, the

top 20% of households hold most wealth (82.7% in the 2006 PSID vs. 82.9% in the model).22 The

model with the baseline calibration also has a Gini coefficient of 0.78, which is comparable with

the data.

The KS calibration has low wealth inequality and a small Gini coefficient (0.32). In our com-

22Unfortunately, the model cannot generate the concentration in the top 1% as observed in the data.
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putation, the +σ(y) calibration lies in between the KMP and KS calibrations in terms of wealth

inequality. The three calibrations have a similar capital–output ratio at the aggregate level, al-

though the KS calibration has a slightly low value.

Table 8: Net wealth distribution (without aggregate uncertainty).

Data Models
% of Share: PSID, 06 SCF, 07 KMP KS +σ(y)

Q1 -0.9 -0.2 0.1182 7.3694 1.7619
Q2 0.8 1.2 0.8796 12.3381 6.4322
Q3 4.4 4.6 3.5852 17.1474 13.6520
Q4 13.0 11.9 12.5377 23.7850 24.9265
Q5 82.7 82.5 82.8793 39.3601 53.2275
90–95 13.7 11.1 19.2195 9.9165 13.4301
95–99 22.8 25.3 29.3285 9.9975 14.5831
T1 30.9 33.5 16.0137 3.4700 5.4405

Wealth Gini 0.77 0.78 0.7843 0.3205 0.5162
K/Y — — 11.0821 10.2674 11.5596

Notes: The figures in columns “Data” (2006 PSID and 2007 SCF) are from Krueger et al. (2016).
KS: Remove the earnings risk and discount factor heterogeneity and set θ = 1 and µ = 0.01. +σ(y):
Remove the discount factor heterogeneity and set θ = 1 and ρ = 0.01.

5.3 Model statistics

To start, we compute the unconditional business cycle statistics for each calibration in Table 9. We

can see that the two algorithms yield very similar results in all three specifications. The outcomes

are also similar in the second–order moments as well as in the levels. Specifically, we have a

high correlation between output and consumption, volatile investment, and persistent output. The

baseline KMP calibration has the largest procyclicality of consumption, less volatile investment,

and less persistent output. Figure 5 also depicts that the unconditional simulation paths for each

algorithm are close to each other in the KMP calibration. This is also the case for the other two

calibrations. See Appendix B.3.
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Table 9: Business cycle statistics.

Model Mean(K/Y ) Corr(Y,C) Std.dev.(I) Corr(Y, Y−4)

KMP
KS 11.0627 0.9405 0.0490 0.8851
Xpa 11.0624 0.9391 0.0494 0.8856

KS
KS 10.2887 0.9208 0.0517 0.8947
Xpa 10.2873 0.9226 0.0512 0.8940

+σ(y)
KS 11.4663 0.9139 0.0567 0.8911
Xpa 11.4644 0.9168 0.0567 0.8913

Notes: All variables unfiltered and in levels as in Krusell and Smith (1998).

Figure 5: Unconditional business cycle simulation, KMP calibration.
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Table 10 provides the micro–level moments at the stochastic steady state as well as the aggregate

capital–output ratio and the fall in aggregate consumption from a negative aggregate productivity

shock. Once again, the results from the two algorithms are almost indistinguishable. In both

algorithms, the capital–output ratio is slightly higher than in the deterministic steady state because

of precautionary saving in the presence of aggregate uncertainty (see also Table 8). This cannot be

captured by Reiter’s (2009) linearization method. The consumption decline in response to a one–
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time negative shock is also similar. We confirm this in Figure 6 by plotting the impulse responses

for the KMP calibration in which heterogeneity matters.

Interestingly, in the KS calibration, the micro–level moments with aggregate uncertainty are

slightly different from those in the stationary distribution. This is also because of precautionary

saving. With aggregate uncertainty, the poor tend to save more, which makes the rich dissave as

the interest rate falls (K/Y becomes higher compared with the deterministic steady state). As

a result, the wealth Gini is even smaller in the stochastic steady state than in the deterministic

steady state.

Table 10: Net wealth distribution (with aggregate uncertainty) and consumption decline.

Models

KMP KS +σ(y)
% of Share: KS Xpa KS Xpa KS Xpa

Q1 0.1159 0.1158 8.3503 8.3017 1.7469 1.7467
Q2 0.8839 0.8833 13.4778 13.4081 6.4824 6.4821
Q3 3.6359 3.6340 18.0413 17.9760 13.7234 13.7233
Q4 12.6631 12.6591 23.8262 23.8071 24.9657 24.9658
Q5 82.7012 82.7077 36.3043 36.5071 53.0816 53.0820
90–95 19.2587 19.2582 9.1490 9.1985 13.3950 13.3951
95–99 29.2337 29.2371 8.9201 8.9964 14.5243 14.5244
T1 15.7834 15.7900 2.9787 3.0164 5.4092 5.4093

Wealth Gini 0.7827 0.7828 0.2811 0.2835 0.5149 0.5149
K/Y 11.0678 11.0672 10.3031 10.2993 11.4788 11.4781

∆C -2.2794 -2.3179 -1.7865 -1.8358 -1.7581 -1.8120
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Figure 6: Impulse responses, KMP calibration.
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5.4 Accuracy and efficiency

Table 11 reports the forecasting errors for the dynamic and static forecasts as in Section 4.3. We

can see that the forecasting rules in the Xpa algorithm are very accurate and comparable with the

KS algorithm. For example, the max DH error is 0.345 in the Xpa algorithm and 0.219 in the KS

algorithm for the KMP calibration. We see that the mean DH error tends to be higher in good

times (i.e., zt = zh) in both the Xpa and KS algorithms.

Finally, we display the computation time in Table 12. The Xpa algorithm is a factor of 100–200

times faster than the KS algorithm. While the number of outer loops tends to be higher in the

Xpa algorithm, it takes less than 1/100th of a second per loop to calculate.

In our computation, we solve the KMP model within seconds with the Xpa algorithm using

Fortran and OpenMP. Note that most of the computation time is in the inner loop.23

23We can solve the inner loop even faster by using the endogenous grid point method (Carroll, 2006; Barillas and
Fernández-Villaverde, 2007; Fella, 2014), for example.
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Table 11: DH statistics, RMSE, and R–squared.

DHmax, % DHmean, % RMSE, % R–squared

KMP
KS zh 0.2069 0.0461 0.0033 1.0000

zl 0.2193 0.0062 0.0043 1.0000
Xpa zh 0.3404 0.0988 0.0050 1.0000

zl 0.3445 0.0168 0.0118 1.0000

KS
KS zh 0.0465 0.0128 0.0010 1.0000

zl 0.0502 0.0021 0.0017 1.0000
Xpa zh 0.1659 0.1051 0.0047 1.0000

zl 0.1611 0.0101 0.0059 1.0000

+σ(y)
KS zh 0.0385 0.0067 0.0007 1.0000

zl 0.0371 0.0016 0.0016 1.0000
Xpa zh 0.2994 0.1142 0.0073 1.0000

zl 0.2625 0.0079 0.0126 1.0000

Notes: Taking the dynamic and static forecast errors (sorted for each zi) {uK,t}Tit=1 and {eK,t}Tit=1

as given, DHmax is the maximum value of {uK,t}Tit=1, DHmean is the average of {uK,t}Tit=1, RMSE

is
√∑Ti

t=1 e
2
K,t, and R–squared is 1−

∑Ti
t=1 e

2
K,t/

∑Ti
t=1(Kt+1 − K̄)2 where K̄ = (1/T )

∑Ti
t=1Kt+1.

Table 12: Computational time.

Inner Outer # of loop Total

KMP
KS 0.455 68.228 14.000 961.568
Xpa 0.360 0.003 14.000 5.078
Xpa/KS 0.792 <0.001 1.000 0.005

KS
KS 0.203 30.939 10.000 311.421
Xpa 0.301 0.000 15.000 4.520
Xpa/KS 1.484 <0.001 1.500 0.015

+σ(y)
KS 0.243 37.082 12.000 447.897
Xpa 0.365 0.001 13.000 4.754
Xpa/KS 1.503 <0.001 1.083 0.011

Notes: Computation using a workstation with Xeon E5–2696v4 (2.2 Ghz, 44 cores).
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6 Concluding remarks

In this paper, the Xpa algorithm originally proposed by den Haan and Rendahl (2010) is applied to

the heterogeneous–firm models in Khan and Thomas (2003, 2008) and the heterogeneous–household

models in Krueger et al. (2016). We demonstrate that the Xpa algorithm is much faster than the

KS algorithm and has a similar accuracy in terms of errors in the forecasting rules. Future research

may include applying the Xpa algorithm to other classes of heterogeneous–agent models, such as

HANK models (e.g., Bayer et al., 2018; Gornemann et al., 2016; Kaplan et al., 2018). As we

can solve the models using a projection method that preserves nonlinearity at the aggregate level,

structural estimations by matching the micro– and macro–level moments in these models by using

the Xpa algorithm may also be of great interest.24

24See, e.g., Mongey and Williams (2017); Winberry (2018); Williams (2017) for recent attempts at structural
estimations using Reiter’s (2009) perturbation methods. Note that none of these studies can investigate the higher–
order effects of aggregate uncertainty as certainty equivalence holds.
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Appendix (not for publication)

A Details of heterogeneous–firm models

A.1 Stationary equilibrium

We use steady–state information for both the bias correction and the ε–indexed aggregation in the

Xpa algorithm. As a precise solution of the stationary equilibrium is necessary, we explain how to

compute the stationary equilibrium in the following steps.

1. Make an initial guess of w and p = η/w because of the household’s utility with indivisible

labor.

2. Taking p and w as given, solve for the value function and the individual decision rules

(a) Make an initial guess of the value function v(0)(εi, k).25

(b) Taking v(l−1)(εi, k) as given (l is an index for iteration in the inner loop), approximate

the expected value function
∑

ε′|εi πε(ε
′|εi)v(l)(ε′, k′) and solve

E0(εi) = max
k′>0

−γpk′ + β
∑
ε′|εi

πε(ε
′|εi)v(l)(ε′, k′)

 , (14)

E1(εi, k) = max
k′∈Ω(k)

−γpk′ + β
∑
ε′|εi

πε(ε
′|εi)v(l)(ε′, k′)

 , (15)

for k∗(εi) and kc(εi, k). The individual decision rules are given by

ḡk(εi, k) = α(εi, k)k∗(εi) + (1− α(εi, k))kc(εi, k),

ḡy(εi, k) = εiF (k, n∗(εi, k)),

where n∗(εi, k) = arg maxn {εiF (k, n)− wn}.
25k is a continuous variable and we discretize it on a computer by grid points. We suppose that k takes a value

of grid points kj ∈ {k1, ..., knk} and use unidimensional piecewise cubic splines to interpolate the values between the
grid points. We omit the index for k for the sake of exposition.
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(c) Update the value function v(l)(εi, k) by

v(l)(εi, k) = pmax
n
{εiF (k, n)− wn}+ p(1− δ)k

− η

∫ ξ̂(εi,k)

0
ξG′(ξ)dξ

+ α(εi, k)E0(εi) + (1− α(εi, k))E1(εi, k), (16)

where

ξ̂(εi, k) = (E0(εi)− E1(εi, k)) /η,

α(εi, k) = G
(
ξ̂(εi, k)

)
.

(d) Iterate Steps (b) and (c) until
∥∥v(l) − v(l−1)

∥∥ is sufficiently small.

3. Solve for the stationary distribution µ̄(εi, k) implied by the individual decision rules (see

below).

4. Update the prices: Given the stationary distribution, the individual decision rules are aggre-

gated as

Y =
∑
i

∫
ḡy(εi, k)µ̄(εi, k)dk, (17)

K =
∑
i

∫
ḡk(εi, k)µ̄(εi, k)dk, (18)

C = Y − δK and p = C−1.

5. Iterate Steps 2–4 until convergence.

In Step 3, we approximate the dynamics of µ̄(εi, k) using the non–stochastic method with histogram

(Young, 2010). That is, µ̄(εi, k) is a continuous object with regard to k and we suppose that k

takes a value of grid points kj ∈ {k1, ..., kñk}.26 Given the current period’s distribution µ(εi, kj)

26We have finer grid points for approximating the distribution than interpolating the value function in Step 2, i.e.,
ñk > nk.
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for i = 1, ..., ne and j = 1, ..., ñk, the next period’s distribution µ(εi′ , kj′) for i′ = 1, ..., ne and

j′ = 1, ..., ñk is obtained from the transition probabilities from the current period’s index (i, j) to

the next period’s index (i′, j′). There are two cases of transition depending on the value of a fixed

cost drawn by the firms indexed by (i, j). (i) When a firm pays the fixed cost ξ ≤ ξ̂(εi, kj) with

probability α(εi, kj): for each i, there is an index j′0 such that k′ = k∗(εi) ∈ [kj′0 , kj′0+1].27 Then the

transition probabilities from (i, j) to (i′, j′0) and (i′, j′0 + 1) are

P(i′, j′0|i, j) =πε(εi′ |εi)ω∗(εi)α(εi, kj),

P(i′, j′0 + 1|i, j) =πε(εi′ |εi) (1− ω∗(εi))α(εi, kj),

where πε(εi′ |εi) is the transition probability from i to i′ and ω∗(εi) =
kj′0+1−k

∗(εi)

kj′0+1−kj′0
. (ii) When a

firm does not pay the fixed cost ξ > ξ̂(εi, kj) with probability 1 − α(εi, k): for each (i, j), there is

an index j′1 such that k′ = kc(εi, kj) ∈ [kj′1 , kj′1+1]. Then the transition probabilities from (i, j) to

(i′, j′1) and (i′, j′1 + 1) are

P(i′, j′1|i, j) =πε(εi′ |εi)ωc(εi, kj) (1− α(εi, kj)) ,

P(i′, j′1 + 1|i, j) =πε(εi′ |εi) (1− ωc(εi, kj)) (1− α(εi, kj)) ,

where ωc(εi, kj) =
kj′1+1−k

c(εi,kj)

kj′1+1−kj′1
. Given the transition probabilities for all (i, j), we have a transition

matrix P such that ~µ = P~µ holds, where ~µ is a stacked (neñk × 1) vector of the stationary

distribution. ~µ is obtained by an iterative method with an initial distribution or eigenvalue and

eigenvector decomposition of the matrix P.28

As shown in Figure 7, the distribution takes the form of a discrete function, especially in

the traditional model of KT (2003) without idiosyncratic productivity shocks and constrained

investment. Therefore, we need fine grid points to approximate such a function.

27Note that all the firms indexed by i choose the same level of capital regardless of kj .
28P is a sparse matrix. To compute the eigenvalue and eigenvector decomposition, Reiter (2009) suggests using

MATLAB’s command eigs. We implement its functionality in Fortran by using the libraries arpack and Sparse BLAS.

45



Figure 7: Stationary distributions.
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A.2 Xpa and KS algorithms

In both the Xpa and KS algorithms, we solve for the individual decision rule g and the aggregate

forecasting rule Γ by the following nested loops. In the inner loop, given the forecasting rule

Γ(n−1) (n is an index for iteration), we solve for the individual decision rule g(n). In the outer

loop, given the individual decision rule obtained in the inner loop, we solve for the forecasting rule

Γ(n). The inner and outer loops are iterated until both g and Γ converge. At the convergence,

the individual decision rule is consistent with the forecasting rule. Each KS and Xpa algorithm

achieves consistency in a different manner. The inner loop is common to both algorithms and only

the outer loop differs.

Inner loop Taking as given the forecasting rules Kt+1 = Γ
(n−1)
K (zt,Kt) and pt = Γ

(n−1)
p (zt,Kt),

the common inner loop for the two algorithms is as follows.

1. Make an initial guess of the value function v(0)(εi, k; zt,Kt).
29

2. Taking v(l−1)(εi, k; zt,Kt) and Kt+1 = Γ
(n−1)
K (zt,Kt) as given (l is an index for iteration in

the inner loop),

(a) Approximate the expected value function in the next period

h(l−1)
εizt (k′,Kt) '

∑
ε′

πε(ε
′|εi)

∑
zt+1

πz(zt+1|zt)v(l−1)(ε′, k′; zt+1,Γ
(n−1)
K (zt,Kt))

for each εi and zt.

(b) Solve

E0(εi; zt,Kt) = max
k′>0

{
−γptk′ + βh(l−1)

εizt (k′,Kt)
}
, (19)

E1(εi, k; zt,Kt) = max
k′∈Ω(k)

{
−γptk′ + βh(l−1)

εizt (k′,Kt)
}
, (20)

29(k,Kt) are continuous variables and we discretize them on a computer by a rectangle of grid points. We suppose
that k takes a value of kj ∈ {k1, ..., knk} and Kt takes a value of Km ∈ {K1, ...,KnK} and use bidimensional piecewise
cubic splines to interpolate the values between the grid points.
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for k∗(εi; zt,Kt) and kc(εi, k; zt,Kt). The individual decision rules are given by

gk(εi, k; zt,Kt) = α(εi, k; zt, µt)k
∗(εi; zt,Kt)

+ (1− α(εi, k; zt,Kt))k
c(εi, k; zt,Kt),

gy(εi, k; zt,Kt) = εiztF (k, n∗(εi, k, zt,Kt)),

where n∗(εi, k, zt,Kt) = arg maxn {εiztF (k, n)− wtn}.

3. Update the value function v(l)(εi, k; zt,Kt) by

v(l)(εi, k; zt,Kt) = pt max
n
{εizF (k, n)− wtn}+ pt(1− δ)k

− η

∫ ξ̂(εi,k;zt,Kt)

0
ξG′(ξ)dξ + α(εi, k; zt,Kt)E0(εi; zt,Kt)

+ (1− α(εi, k; zt,Kt))E1(εi, k; zt,Kt),

where

ξ̂(εi, k; zt,Kt) = (E0(εi; zt,Kt)− E1(εi, k; zt,Kt)) / (wtpt) ,

α(εi, k; zt,Kt) = G
(
ξ̂(εi, k; zt,Kt)

)
.

4. Iterate Steps 2 and 3 until
∥∥v(l) − v(l−1)

∥∥ is sufficiently small.

Outer loop in the KS algorithm In the outer loop in the KS algorithm, the individual decision

rules aggregate with µt(εi, kj) in each period. The model is simulated for long enough to obtain

the sequence of aggregate variables.

Taking the value function v(εi, k; zt,Kt) obtained in the inner loop as given, the outer loop in

the KS algorithm is as follows.

1. Make a sequence of {zt} for t = 1, ..., T and an initial distribution µ1(εi, kj) approximated by

a histogram at each grid point for i = 1, ..., ne and j = 1, ..., ñk so that
∑

i

∑
j µ1(εi, kj) = 1

holds.
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2. In each period t = 1, ..., T , zt and the current period’s distribution µt(εi, kj) are given.

(a) The aggregate capital is given by Kt =
∑

i

∑
j kjµt(εi, kj). Taking v(εi, kj ; zt,Kt) and

Kt+1 = Γ
(n−1)
K (zt,Kt) as given, make a conjecture of p̃t (which is not necessarily the

forecasted price) and solve for gy(εi, kj ; zt,Kt) and gk(εi, kj ; zt,Kt) by the same procedure

as in Step 2 for the inner loop. Then aggregate the individual decision rules with the

distribution to obtain

Yt =
∑
i

∑
j

gy(εi, kj ; zt,Kt)µt(εi, kj),

Kt+1 =
∑
i

∑
j

gk(εi, kj ; zt,Kt)µt(εi, kj),

Ct = Yt − γKt+1 + (1 − δ)Kt, and pt = C−1
t . That is, there is a mapping from the

conjectured price to the new price and it is denoted by pt = F (p̃t).

(b) Iterate Step 2(b) to find the market–clearing price p∗t satisfying p∗t = F (p∗t ).

(c) Update the next period’s distribution µt+1(εi, kj) by ~µt+1 = P~µt where ~µt is a stacked

vector of the distribution in period t and P is a transition matrix with the transition

probabilities from the current period’s index (i, j) to the next period’s index (i′, j′) and

(i′, j′ + 1). There are two cases. When ξ ≤ ξ̂(εi, k; zt,Kt),

P(i′, j′0|i, j) =πε(εi′ |εi)ω∗(εi; zt,Kt)α(εi, kj ; zt,Kt),

P(i′, j′0 + 1|i, j) =πε(εi′ |εi) (1− ω∗(εi; zt,Kt))α(εi, kj ; zt,Kt),

where ω∗(εi; zt,Kt) =
kj′0+1−k

∗(εi;zt,Kt)

kj′0+1−kj′0
and when ξ > ξ̂(εi, k; zt,Kt),

P(i′, j′1|i, j) =πε(εi′ |εi)ωc(εi, kj ; zt,Kt) (1− α(εi, kj ; zt,Kt)) ,

P(i′, j′1 + 1|i, j) =πε(εi′ |εi) (1− ωc(εi, kj ; zt,Kt)) (1− α(εi, kj ; zt,Kt)) ,

where ωc(εi, kj ; zt,Kt) =
kj′1+1−k

c(εi,kj ;zt,Kt)

kj′1+1−kj′1
.
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3. Update the forecasting rules Kt+1 = Γ
(n)
K (zt,Kt) and pt = Γ

(n)
p (zt,Kt) by using the sequence

of {zt,Kt, pt}Tt=t0+1 obtained in Step 2 for t = 1, ..., T (the first t0 periods are discarded).

Specifically, using the sequence obtained, we construct a subset of the sequence sorted by the

realization of zt for each zi ∈ {z1, ..., znz} and estimate the forecasting rule by ordinary least

squares in the form of

logKt+1 = bK,0(zi) + bK,1(zi) logKt,

log pt = bp,0(zi) + bp,1(zi) logKt,

for each i = 1, ..., nz.

Outer loop in the Xpa algorithm In the Xpa algorithm, aggregate technology zm and ag-

gregate capital Km are given as a grid point for m = 1, ..., nenK .30 Taking the expected value

functions as given, the fixed point problem pm = F (pm) is solved as in the KS algorithm but at

each grid point. The market clearing price is solved for nznK grid points in the Xpa algorithm,

whereas it is solved in each period of simulations for T periods in the KS algorithm. The Xpa

algorithm is faster than the KS algorithm as nznK << T holds.

Taking the value function v(εi, k; z,K) obtained in the inner loop as given, the outer loop in

the Xpa algorithm is as follows.

1. Calculate the bias–correction terms

ζk(εi) = Kss(εi)− ḡk(Kss(εi)),

ζy(εi) = Yss(εi)− ḡy(Kss(εi)),

where Kss(εi) =
∑

j kjµ̄k(kj |εi) =
∑

j kjµ̄(εi, kj)/φ(εi). Also compute ψ(εi) = Kss(εi)/Kss

for the ε–indexed aggregation.

30We explicitly consider the aggregate state variables (zm,Km) as grid points and use subscripts m instead of
t. The next period’s aggregate capital is denoted by K′ instead of Kt+1. The other aggregate variables are also
computed at each grid point, so they are indexed by m rather than time t.
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2. At each grid point (zm,Km) indexed by m = 1, ..., nznK ,

(a) The aggregate capital Km is given as a grid point.

(b) Taking v(εi, k; zm,Km) and K ′m = Γ
(n−1)
K (zm,Km) as given, make a conjecture of p̃m

(which is not necessarily the forecasted price) and solve for gy(εi, k; zm,Km) and gk(εi, k; zm,Km)

by the same procedure as in Step 2 for the inner loop. Then evaluate the individual de-

cision rules at k = K(εi) ≈ ψ(εi)Km for each εi and calculate the weighted average to

obtain

Ym =
∑
i

[gy(εi, ψ(εi)Km; zm,Km) + ζy(εi)]φ(εi),

K ′m =
∑
i

[gk(εi, ψ(εi)Km; zm,Km) + ζk(εi)]φ(εi),

Cm = Ym − γK ′m + (1− δ)Km, and pm = C−1
m . That is, there is a mapping denoted by

pm = F (p̃m).

(c) Iterate Step 2(b) to find the market–clearing price p∗m satisfying p∗m = F (p∗m).

3. Update the forecasting rules K ′ = Γ
(n)
K (z,K) and p = Γ

(n)
p (z,K) by using (K ′m, pm) obtained

in Step 2 at each grid point (zm,Km).

Numerical setup The individual capital k ranges between [0.1,5.0] and is spaced into nk = 101

grid points. The aggregate capital K ranges between [0.75Kss,1.25Kss] around the steady state

value of Kss and is evenly spaced into nK = 5 grid points. The distribution of k is approximated

by ñk = 2001 grid points by the non–stochastic method with histogram (Young, 2010). For the

idiosyncratic and aggregate shocks, ne = 5 and nz = 5 grid points are used with Tauchen’s (1986)

method to approximate the AR(1) processes. We set the grid points to cover 99% (95%) of the

distribution implied by the original AR(1) process for the idiosyncratic (aggregate) productivity

shock.31 A two–dimensional cubic spline is used to approximate the expected value function. To

solve for k∗ and kc in (19) and (20), a variant of Newton’s method or the golden section search

31That is, εne = −ε1 = 2.58σε/
√

1− ρ2ε and znz = −z1 = 1.96σz/
√

1− ρ2z.
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method is used. Convergence criteria are 10−4 for the outer loop, 10−5 for the inner loop, 10−6 for

market clearing in the outer loop, and 10−10 for the other optimizations. The initial forecasting

rules are from the social planner’s problem. In the KS algorithm, the model is simulated for 2,500

periods and the first 500 periods are discarded. The same sequence of {zt} throughout all the outer

loops is used to avoid chatter, which prevents the algorithm from converging within a finite sample.

A.3 More numerical results

Table 13: Business cycle statistics, traditional model.

Y C I N K Z

Standard deviation
KS (2.5293) 0.4329 3.6109 0.6680 0.5169 0.5981
Xpa (2.5134) 0.4370 3.5901 0.6619 0.5142 0.6019

Output correlation
KS 1.0000 0.8762 0.9740 0.9379 0.0451 0.9995
Xpa 1.0000 0.8807 0.9740 0.9374 0.0447 0.9995

Persist. Std.dev. Skewness Exc.kur.

Agg. investment rate, I/K
KS 0.6571 0.0108 0.0747 -0.0968
Xpa 0.6590 0.0106 0.0619 -0.0946
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Figure 8: Unconditional business cycle simulation, traditional model.
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Figure 9: Impulse responses, traditional model.
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Table 14: Level differences between KS and Xpa, traditional model.

a. Aggregate variables

K/Y N p = C−1

KS 2.3476 0.3337 2.4002

Xpa 2.3489 0.3337 2.3998

SS 2.3487 0.3337 2.3998

b. Firm–level investment rates

Mean Std.dev. Inaction Spike+ Spike- Invest+ Invest-

KS 0.1046 0.0214 0.2115 0.1279 0.0000 0.7885 0.0000

Xpa 0.1046 0.0214 0.2115 0.1280 0.0000 0.7885 0.0000

SS 0.1046 0.0214 0.2113 0.1284 0.0000 0.7887 0.0000

Figure 10: den Haan fundamental plots, traditional model.
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B Details of heterogeneous–household models

B.1 Stationary equilibrium

We explain how to compute the stationary equilibrium in the following steps.

1. Make an initial guess of K and obtain w = (1 − α)(K/L)−α and r = α(K/L)α−1 − δ where

L = 1− (Πlu(zl) + (1−Πl)u(zh)).

2. Taking K, w and r as given, solve for the value function and the individual decision rules

(a) Make an initial guess of the value function v(0)(xi, k).

(b) Taking v(l−1)(εi, k) as given (l is an index for iteration in the inner loop), approximate

the expected value function and solve

v(l)(xi, k) = max
k′≥0

{
u
(
(1− τ)wyiei + (1 + r)k/θ − k′

)
+ θβi

∑
e′

∑
y′

πe(e
′|ei)πy(y′|yi)v(l−1)(e′, y′, βi, k

′)

 ,

for the individual decision rule k′ = ḡ(xi, k).

(c) Iterate Step (b) until
∥∥v(l) − v(l−1)

∥∥ is sufficiently small.

3. Solve for the stationary distribution µ̄(xi, k) implied by the individual decision rules.

4. Given the stationary distribution, the individual decision rule is aggregated as

K =
∑
i

∫
ḡ(xi, k)θµ̄(xi, k)dk,

where θ is the survival probability from period t to period t + 1. Note that the replacing

newborns have no assets.

5. Iterate Steps 2–4 until convergence.
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The transition matrix for employment status is conditioned on (zt, zt+1) and denoted by

πe(ei′ |ei, zt+1, zt) =

 pztzt+1 1− pztzt+1

1− qztzt+1 qztzt+1

 ,
where pztzt+1 is the conditional probability to continue to be unemployed and qztzt+1 is the con-

ditional probability to continue to be employed. Then the transition matrix for the stationary

equilibrium is given by

πe(ei′ |ei) =

 p 1− p

1− q q

 ,
where

p =
(1−Πl)u(zh)

uss
(ρhpzhzh + (1− ρh)pzhzl) +

Πlu(zl)

uss
((1− ρl)pzlzh + ρlpzlzl) ,

q =
(1−Πl)(1− u(zh))

1− uss
(ρhqzhzh + (1− ρh)qzhzl) +

Πl(1− u(zl))

1− uss
((1− ρl)qzlzh + ρlqzlzl) ,

and uss = (1 − Πl)u(zh) + Πlu(zl). Note that the stationary distribution of employment status

implied by πe(e
′|e) coincides with the employment rate 1− uss.

In Step 3, given the current period’s distribution µ(xi, kj) for i = 1, ..., nx and j = 1, ..., ñk, the

next period’s distribution µ(εi′ , kj′) for i′ = 1, ..., ne and j′ = 1, ..., ñk is obtained from transition

probabilities from the current period’s index (i, j) to the next period’s index (i′, j′). With proba-

bility (1− θ), households die and newly born households with the same properties xi′ = (εi′ , yi′ , βi)

and no assets replace the old. The transition probability from (i, j) to (i′, 1) is

P(i′, 1|i, j) =πe(ei′ |ei)πy(yi′ |yi)(1− θ).

With probability θ, households continue to live in the next period and choose k′ = ḡ(xi, kj). Then
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the transition probabilities from (i, j) to (i′, j′) and (i′, j′ + 1) are

P(i′, j′|i, j) =πe(ei′ |ei)πy(yi′ |yi)ω∗(xi, kj)θ,

P(i′, j′ + 1|i, j) =πe(ei′ |ei)πy(yi′ |yi) (1− ω∗(xi, kj)) θ,

where ω∗(xi, kj) =
kj′0+1−ḡ(xi,kj)
kj′0+1−kj′0

. If j′ = 1, the transition probability from (i, j) to (i′, 1) is the sum

of two probabilities. That is, P(i′, 1|i, j) = πe(ei′ |ei)πy(yi′ |yi) (ω∗(xi, kj)θ + (1− θ)).

B.2 Xpa and KS algorithms

Inner loop Taking as given the forecasting rule Kt+1 = Γ(n−1)(zt,Kt), the common inner loop

for the two algorithms is as follows.

1. Make an initial guess of the value function v(0)(xi, k; zt,Kt).

2. Taking v(l−1)(xi, k; zt,Kt) and Kt+1 = Γ(n−1)(zt,Kt) as given (l is an index for iteration in

the inner loop),

(a) Approximate the expected value function in the next period

h(l−1)
xizt (k′,Kt) '

∑
zt+1

∑
e′

∑
y′

πz(zt+1|zt)πe(e′|ei, zt+1, zt)πy(y
′|yi)

× v(l−1)(e′, y′, βi, k
′; zt+1,Γ(zt,Kt))

for each xi and zt.

(b) Solve

v(l)(xi, k; zt,Kt) = max
c,k′≥0

{
u(c) + θβih

(l−1)
xizt (k′,Kt)

}

subject to the budget constraint

c+ k′ = (1− τ(zt; ρ))wtyiei + (1 + rt)k/θ,

57



where wt = (1 − α)zt(Kt/L(zt))
−α and rt = α(Kt/L(zt))

α−1 − δ. Note that L(zt) =

1− u(zt) is exogenously given.

3. Iterate Step 2 until
∥∥v(l) − v(l−1)

∥∥ is sufficiently small.

Outer loop in the KS algorithm Taking the value function v(xi, k; zt,Kt) obtained in the

inner loop as given, the outer loop in the KS algorithm is as follows.

1. Make a sequence of {zt} for t = 1, ..., T and an initial distribution µ1(xi, kj) approximated by

a histogram at each grid point for i = 1, ..., nx and j = 1, ..., ñk so that
∑

i

∑
j µ1(xi, kj) = 1

holds.

2. In each period t = 1, ..., T , zt and the current period’s distribution µt(xi, kj) are given.

(a) The aggregate capital is given by Kt =
∑

i

∑
j kjµt(xi, kj).

32

(b) Taking v(xi, kj ; zt,Kt) and Kt+1 = Γ(n−1)(zt,Kt) as given, solve for g(xi, kj ; zt,Kt) by

the same procedure as in Step 2 for the inner loop. Then aggregate the individual

decision rules with the distribution to obtain

Kt+1 =
∑
i

∑
j

g(xi, kj ; zt,Kt)θµt(xi, kj).

Update the next period’s distribution µt+1(xi, kj) by ~µt+1 = P~µt where ~µt is a stacked

vector of the distribution in period t and P is a transition matrix with the transition

probabilities. With probability (1− θ), the transition probability from (i, j) to (i′, 1) is

P(i′, 1|i, j) =πe(ei′ |ei, zt+1, zt)πy(yi′ |yi)(1− θ).

32Note this may not be on the grid points. Therefore we need to approximate g(εi, kj ; zt,Kt) obtained in the inner
loop or redo the optimization.
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With probability θ, the transition probabilities from (i, j) to (i′, j′) and (i′, j′ + 1) are

P(i′, j′|i, j) =πe(e
′|ei, zt+1, zt)πy(y

′|yi)ω(xi, kj ; zt,Kt)θ,

P(i′, j′ + 1|i, j) =πe(e
′|ei, zt+1, zt)πy(y

′|yi) (1− ω(xi, kj ; zt,Kt)) θ,

where ω(xi, kj ; zt,Kt) =
kj′+1−g(xi,kj ;zt,Kt)

kj′+1−kj′
.

3. Update the forecasting rule Kt+1 = Γ
(n)
K (zt,Kt) by using the sequence of {zt,Kt}Tt=t0+1 ob-

tained in Step 2 for t = 1, ..., T (the first t0 periods are discarded). Specifically, using the

sequence obtained, we construct a subset of the sequence sorted by the realization of zt for

each zi ∈ {z1, ..., znz} and estimate the forecasting rule by ordinary least squares in the form

of

logKt+1 = bK,0(zi) + bK,1(zi) logKt,

for each i = 1, ..., nz.

Outer loop in the Xpa algorithm Taking the value function v(xi, k; z,K) obtained in the

inner loop as given, the outer loop in the Xpa algorithm is as follows.

1. Calculate the bias–correction terms

ζ(xi) = Kss(xi)− ḡk(Kss(xi)),

whereKss(xi) =
∑

j kjµ̄k(kj |xi) =
∑

j kjµ̄(xi, kj)/φ(xi). Also compute ψ(xi; zm) = Kss(xi; zm)/Kss

for the ε–indexed aggregation where Kss(xi; zt) =
∑

j kjµ̄k(kj |xi) =
∑

j kjµ̄(xi, kj)/φ(xi; zm).

Note that the bias–correction terms do not depend on zm.

2. At each grid point (zm,Km) indexed by m = 1, ..., nznK ,

(a) The aggregate capital Km is given as a grid point.
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(b) Taking v(xi, k; zm,Km) and K ′m = Γ(n−1)(zm,Km) as given, solve for g(xi, k; zm,Km) by

the same procedure as in Step 2 for the inner loop. Then evaluate the individual decision

rules at k = K(xi) ≈ ψ(xi; zm)Km for each xi and calculate the weighted average to

obtain

K ′m =
∑
i

[g(xi, ψ(xi; zm)Km; zm,Km)θ + ζ(xi)]φ(xi; zm).

3. Update the forecasting rules K ′ = Γ(n)(z,K) by using K ′m obtained in Step 2 at each grid

point (zm,Km).

Numerical setup The individual capital k ranges between [0.0, kmax] and is spaced into nk = 101

grid points, where kmax = 2000 for the benchmark calibration, kmax = 700 for the +σ(y) calibration,

and kmax = 250 for the KS calibration. More grid points are given toward small values considering

concavity of the value function in k. The aggregate capital K ranges between [0.80Kss,1.15Kss]

around the steady state value of Kss and is evenly spaced into nK = 5 grid points. The distribution

of k is approximated by ñk = 2001 grid points. For the labor productivity shock, ny = 7 grid points

are used with Rouwenhorst’s (1995) method to approximate the AR(1) processes. The discount

factor shock takes either of the values in nd = 3 grid points {β̄ − ε, β̄, β̄ + ε}. A two–dimensional

cubic spline approximates the expected value function. To solve for k′, a variant of Newton’s

method or the golden section search method is used. Convergence criteria are 10−4 for the outer

loop, 10−5 for the inner loop, and 10−10 for the other optimizations.
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B.3 More numerical results

Figure 11: Unconditional business cycle simulation, KS calibration.
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Figure 12: Impulse responses, KS calibration.
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Figure 13: Unconditional business cycle simulation, +σ(y) calibration.
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Figure 14: Impulse responses, +σ(y) calibration.
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Figure 15: den Haan fundamental plots, KMP calibration.
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Figure 16: den Haan fundamental plots, KS calibration.

1100 1200 1300 1400 1500

3.64
3.65
3.66
3.67
3.68
3.69

Lo
g

KS:Capital

Dynamic
Static
Actual

1100 1200 1300 1400 1500

3.64
3.65
3.66
3.67
3.68
3.69

Lo
g

Xpa:Capital

63



Figure 17: den Haan fundamental plots, +σ(y) calibration.
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